BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22535512)

  • 1. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice.
    Kato T; Funakoshi H; Kadoyama K; Noma S; Kanai M; Ohya-Shimada W; Mizuno S; Doe N; Taniguchi T; Nakamura T
    J Neurosci Res; 2012 Sep; 90(9):1743-55. PubMed ID: 22535512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory.
    Nakajo Y; Miyamoto S; Nakano Y; Xue JH; Hori T; Yanamoto H
    Brain Res; 2008 Nov; 1241():103-9. PubMed ID: 18801341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarray analysis of gene expression changes in the brains of NR2B-induced memory-enhanced mice.
    Li C; Dong S; Wang H; Hu Y
    Neuroscience; 2011 Dec; 197():121-31. PubMed ID: 21925573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatocyte growth factor promotes lung carcinogenesis in transgenic mice treated with diethylnitrosamine.
    Kojima A; Horiguchi N; Kakizaki S; Takayama H; Mori M
    Anticancer Res; 2013 Mar; 33(3):895-901. PubMed ID: 23482759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.
    Klug M; Hill RA; Choy KH; Kyrios M; Hannan AJ; van den Buuse M
    Neurobiol Dis; 2012 Jun; 46(3):722-31. PubMed ID: 22426399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.
    Jung YH; Suh YH
    Neuroreport; 2010 Aug; 21(12):808-11. PubMed ID: 20581725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice.
    Boon WC; Diepstraten J; van der Burg J; Jones ME; Simpson ER; van den Buuse M
    Brain Res Mol Brain Res; 2005 Oct; 140(1-2):127-32. PubMed ID: 16083992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus.
    Akimoto M; Baba A; Ikeda-Matsuo Y; Yamada MK; Itamura R; Nishiyama N; Ikegaya Y; Matsuki N
    Neuroscience; 2004; 128(1):155-62. PubMed ID: 15450362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia.
    Nagayama T; Nagayama M; Kohara S; Kamiguchi H; Shibuya M; Katoh Y; Itoh J; Shinohara Y
    Brain Res; 2004 Mar; 999(2):155-66. PubMed ID: 14759494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatocyte growth factor protects against Fas-mediated liver apoptosis in transgenic mice.
    Suzuki H; Toyoda M; Horiguchi N; Kakizaki S; Ohyama T; Takizawa D; Ichikawa T; Sato K; Takagi H; Mori M
    Liver Int; 2009 Nov; 29(10):1562-8. PubMed ID: 19725891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in brain cholinergic markers and spatial learning in old galanin-overexpressing mice.
    Pirondi S; D'Intino G; Gusciglio M; Massella A; Giardino L; Kuteeva E; Ogren SO; Hökfelt T; Calzà L
    Brain Res; 2007 Mar; 1138():10-20. PubMed ID: 17266943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing.
    Cao X; Cui Z; Feng R; Tang YP; Qin Z; Mei B; Tsien JZ
    Eur J Neurosci; 2007 Mar; 25(6):1815-22. PubMed ID: 17432968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chronic multiple stress enhances learning and memory capability in rats].
    Liu NB; Li H; Liu XQ; Sun CY; Cheng SR; Zhang MH; Liu SC; Wang WX
    Sheng Li Xue Bao; 2004 Oct; 56(5):615-9. PubMed ID: 15497043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity.
    Avital A; Goshen I; Kamsler A; Segal M; Iverfeldt K; Richter-Levin G; Yirmiya R
    Hippocampus; 2003; 13(7):826-34. PubMed ID: 14620878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of myristoylated alanine-rich C kinase substrate (MARCKS) overexpression on hippocampus-dependent learning and hippocampal synaptic plasticity in MARCKS transgenic mice.
    McNamara RK; Hussain RJ; Simon EJ; Stumpo DJ; Blackshear PJ; Abel T; Lenox RH
    Hippocampus; 2005; 15(5):675-83. PubMed ID: 15889447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus.
    Zhao H; Li Q; Pei X; Zhang Z; Yang R; Wang J; Li Y
    Behav Brain Res; 2009 Aug; 201(2):311-7. PubMed ID: 19428650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficits in spatial learning and memory is associated with hippocampal volume loss in aged apolipoprotein E4 mice.
    Yin JX; Turner GH; Lin HJ; Coons SW; Shi J
    J Alzheimers Dis; 2011; 27(1):89-98. PubMed ID: 21743131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-training N-methyl-D-aspartate receptor blockade offers protection from retrograde interference but does not affect consolidation of weak or strong memory traces in the water maze.
    Day M; Langston RF
    Neuroscience; 2006; 137(1):19-28. PubMed ID: 16289349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats.
    Li XH; Liu NB; Zhang MH; Zhou YL; Liao JW; Liu XQ; Chen HW
    Chin Med J (Engl); 2007 Apr; 120(8):669-74. PubMed ID: 17517182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic enhancement of learning and memory in mice.
    Tang YP; Shimizu E; Dube GR; Rampon C; Kerchner GA; Zhuo M; Liu G; Tsien JZ
    Nature; 1999 Sep; 401(6748):63-9. PubMed ID: 10485705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.