BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 22535786)

  • 1. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.
    Rassier DE
    Proc Biol Sci; 2012 Jul; 279(1739):2705-13. PubMed ID: 22535786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force enhancement following stretch in a single sarcomere.
    Leonard TR; DuVall M; Herzog W
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual force enhancement in skeletal muscles: one sarcomere after the other.
    Rassier DE
    J Muscle Res Cell Motil; 2012 Aug; 33(3-4):155-65. PubMed ID: 22729612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non-uniformities.
    Haeger RM; Rassier DE
    Sci Rep; 2020 Dec; 10(1):21590. PubMed ID: 33299041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual force enhancement in myofibrils and sarcomeres.
    Joumaa V; Leonard TR; Herzog W
    Proc Biol Sci; 2008 Jun; 275(1641):1411-9. PubMed ID: 18348966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force enhancement following an active stretch in skeletal muscle.
    Rassier DE; Herzog W
    J Electromyogr Kinesiol; 2002 Dec; 12(6):471-7. PubMed ID: 12435544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is titin a 'winding filament'? A new twist on muscle contraction.
    Nishikawa KC; Monroy JA; Uyeno TE; Yeo SH; Pai DK; Lindstedt SL
    Proc Biol Sci; 2012 Mar; 279(1730):981-90. PubMed ID: 21900329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the passive component of force enhancement following active stretching of skeletal muscle.
    Herzog W; Schachar R; Leonard TR
    J Exp Biol; 2003 Oct; 206(Pt 20):3635-43. PubMed ID: 12966055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.
    Rassier DE
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C134-C145. PubMed ID: 28539306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titin elasticity in the context of the sarcomere: force and extensibility measurements on single myofibrils.
    Linke WA
    Adv Exp Med Biol; 2000; 481():179-202; discussion 203-6. PubMed ID: 10987073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness.
    Powers JD; Bianco P; Pertici I; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2020 Jan; 598(2):331-345. PubMed ID: 31786814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation.
    Nishikawa K
    J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoring force development by titin/connectin and assessment of Ig domain unfolding.
    Preetha N; Yiming W; Helmes M; Norio F; Siegfried L; Granzier H
    J Muscle Res Cell Motil; 2005; 26(6-8):307-17. PubMed ID: 16470334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.
    Linke WA; Fernandez JM
    J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the passive elasticity of muscle be explained directly from the mechanics of individual titin molecules?
    Tskhovrebova L; Houmeida A; Trinick J
    J Muscle Res Cell Motil; 2005; 26(6-8):285-9. PubMed ID: 16465473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
    Minajeva A; Kulke M; Fernandez JM; Linke WA
    Biophys J; 2001 Mar; 80(3):1442-51. PubMed ID: 11222304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction.
    Cornachione AS; Rassier DE
    Am J Physiol Cell Physiol; 2012 Feb; 302(3):C566-74. PubMed ID: 22094333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.