BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22535796)

  • 1. NHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones.
    Weinman EJ; Lederer ED
    Am J Physiol Renal Physiol; 2012 Aug; 303(3):F321-7. PubMed ID: 22535796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting.
    Shenolikar S; Voltz JW; Minkoff CM; Wade JB; Weinman EJ
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11470-5. PubMed ID: 12169661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent Signaling Pathways Regulate Parathyroid Hormone and Fibroblast Growth Factor-23 Action on NPT2A-mediated Phosphate Transport.
    Sneddon WB; Ruiz GW; Gallo LI; Xiao K; Zhang Q; Rbaibi Y; Weisz OA; Apodaca GL; Friedman PA
    J Biol Chem; 2016 Sep; 291(36):18632-42. PubMed ID: 27432882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-DNA Interactions at the Opossum Npt2a Promoter are Dependent upon NHERF-1.
    Clark BJ; Murray RD; Salyer SA; Tyagi SC; Arumugam C; Khundmiri SJ; Lederer ED
    Cell Physiol Biochem; 2016; 39(1):1-12. PubMed ID: 27322746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box.
    Mamonova T; Friedman PA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ezrin-anchored protein kinase A coordinates phosphorylation-dependent disassembly of a NHERF1 ternary complex to regulate hormone-sensitive phosphate transport.
    Wang B; Means CK; Yang Y; Mamonova T; Bisello A; Altschuler DL; Scott JD; Friedman PA
    J Biol Chem; 2012 Jul; 287(29):24148-63. PubMed ID: 22628548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular sociology of NHERF1 PDZ proteins controlling renal hormone-regulated phosphate transport.
    Friedman PA; Mamonova T
    Biosci Rep; 2024 Mar; 44(3):. PubMed ID: 38465463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal phosphate wasting in the absence of adenylyl cyclase 6.
    Fenton RA; Murray F; Dominguez Rieg JA; Tang T; Levi M; Rieg T
    J Am Soc Nephrol; 2014 Dec; 25(12):2822-34. PubMed ID: 24854272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts.
    Wang B; Yang Y; Liu L; Blair HC; Friedman PA
    Bone; 2013 Jan; 52(1):268-77. PubMed ID: 23046970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Intricacies of Renal Phosphate Reabsorption-An Overview.
    Walker V
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PPAR-α knockout leads to elevated blood pressure response to angiotensin II infusion associated with an increase in renal α-1 Na
    Khundmiri SJ; Ecelbarger CM; Amponsem J; Ji H; Sandberg K; Lee DL
    Life Sci; 2022 May; 296():120444. PubMed ID: 35245523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal Contributions to Age-Related Changes in Mineral Metabolism.
    Irsik DL; Bollag WB; Isales CM
    JBMR Plus; 2021 Oct; 5(10):e10517. PubMed ID: 34693188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-phosphorus diet controlled for sodium elevates blood pressure in healthy adults via volume expansion.
    Zhang JY; You HZ; Wang MJ; Zhang Q; Dong XY; Liu JF; Chen J
    J Clin Hypertens (Greenwich); 2021 Apr; 23(4):849-859. PubMed ID: 33486869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New roles of the Na
    Bushau-Sprinkle AM; Lederer ED
    Am J Physiol Renal Physiol; 2020 Mar; 318(3):F804-F808. PubMed ID: 31984791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging.
    Pushpakumar S; Ahmad A; Ketchem CJ; Jose PA; Weinman EJ; Sen U; Lederer ED; Khundmiri SJ
    Life Sci; 2020 Feb; 243():117226. PubMed ID: 31904366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dent disease: A window into calcium and phosphate transport.
    Anglani F; Gianesello L; Beara-Lasic L; Lieske J
    J Cell Mol Med; 2019 Nov; 23(11):7132-7142. PubMed ID: 31472005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,25-Dihydroxyvitamin D Maintains Brush Border Membrane NaPi2a and Attenuates Phosphaturia in Hyp Mice.
    Martins JS; Liu ES; Sneddon WB; Friedman PA; Demay MB
    Endocrinology; 2019 Oct; 160(10):2204-2214. PubMed ID: 31237611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NaPi-IIa interacting partners and their (un)known functional roles.
    Hernando N
    Pflugers Arch; 2019 Jan; 471(1):67-82. PubMed ID: 30022249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats.
    Barati MT; Ketchem CJ; Merchant ML; Kusiak WB; Jose PA; Weinman EJ; LeBlanc AJ; Lederer ED; Khundmiri SJ
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C197-C206. PubMed ID: 28515088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phosphate balance by the kidney and intestine.
    Kaneko I; Tatsumi S; Segawa H; Miyamoto KI
    Clin Exp Nephrol; 2017 Mar; 21(Suppl 1):21-26. PubMed ID: 27900568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.