These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22536020)

  • 1. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.
    Deenanath ED; Iyuke S; Rumbold K
    J Biomed Biotechnol; 2012; 2012():416491. PubMed ID: 22536020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A panoramic view of technological landscape for bioethanol production from various generations of feedstocks.
    Devi A; Bajar S; Sihag P; Sheikh ZUD; Singh A; Kaur J; Bishnoi NR; Pant D
    Bioengineered; 2023 Dec; 14(1):81-112. PubMed ID: 37401849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine Enzymes and Microorganisms for Bioethanol Production.
    Swain MR; Natarajan V; Krishnan C
    Adv Food Nutr Res; 2017; 80():181-197. PubMed ID: 28215326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.
    Vasić K; Knez Ž; Leitgeb M
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33535536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainability analysis of bioethanol production from grain and tuber starchy feedstocks.
    Sanni A; Olawale AS; Sani YM; Kheawhom S
    Sci Rep; 2022 Dec; 12(1):20971. PubMed ID: 36470926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economics of Biofuel Production: A Case of Sorghum and Pearl Millet in India.
    Reddy MG; Reddy BS
    Methods Mol Biol; 2021; 2290():287-316. PubMed ID: 34009597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments.
    Saini JK; Saini R; Tewari L
    3 Biotech; 2015 Aug; 5(4):337-353. PubMed ID: 28324547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties.
    Gwenzi W; Chaukura N; Mukome FND; Machado S; Nyamasoka B
    J Environ Manage; 2015 Mar; 150():250-261. PubMed ID: 25521347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol from lignocellulosic biomass.
    Zhao XQ; Zi LH; Bai FW; Lin HL; Hao XM; Yue GJ; Ho NW
    Adv Biochem Eng Biotechnol; 2012; 128():25-51. PubMed ID: 22138971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview on bioethanol production from lignocellulosic feedstocks.
    Toor M; Kumar SS; Malyan SK; Bishnoi NR; Mathimani T; Rajendran K; Pugazhendhi A
    Chemosphere; 2020 Mar; 242():125080. PubMed ID: 31675581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid alkyl esters: perspectives for production of alternative biofuels.
    Röttig A; Wenning L; Bröker D; Steinbüchel A
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1713-33. PubMed ID: 20033403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability.
    Hedegaard K; Thyø KA; Wenzel H
    Environ Sci Technol; 2008 Nov; 42(21):7992-9. PubMed ID: 19031892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.
    van Zyl WH; Chimphango AF; den Haan R; Görgens JF; Chirwa PW
    Interface Focus; 2011 Apr; 1(2):196-211. PubMed ID: 22482027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.
    Holder CT; Cleland JC; LeDuc SD; Andereck Z; Hogan C; Martin KM
    J Air Waste Manag Assoc; 2016 Apr; 66(4):356-65. PubMed ID: 26727486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance.
    Morales M; Arvesen A; Cherubini F
    Bioresour Technol; 2021 May; 328():124833. PubMed ID: 33611017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental sustainability of bioethanol produced from sweet sorghum stem on saline-alkali land.
    Wang M; Pan X; Xia X; Xi B; Wang L
    Bioresour Technol; 2015; 187():113-119. PubMed ID: 25846180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.