These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22536151)

  • 1. The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons.
    Evans RC; Morera-Herreras T; Cui Y; Du K; Sheehan T; Kotaleski JH; Venance L; Blackwell KT
    PLoS Comput Biol; 2012; 8(4):e1002493. PubMed ID: 22536151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.
    Jędrzejewska-Szmek J; Damodaran S; Dorman DB; Blackwell KT
    Eur J Neurosci; 2017 Apr; 45(8):1044-1056. PubMed ID: 27233469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity.
    Urakubo H; Honda M; Froemke RC; Kuroda S
    J Neurosci; 2008 Mar; 28(13):3310-23. PubMed ID: 18367598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity.
    Kim B; Hawes SL; Gillani F; Wallace LJ; Blackwell KT
    PLoS Comput Biol; 2013; 9(3):e1002953. PubMed ID: 23516346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calcium-influx-dependent plasticity model exhibiting multiple STDP curves.
    Houben AM; Keil MS
    J Comput Neurosci; 2020 Feb; 48(1):65-84. PubMed ID: 31980990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
    Fino E; Deniau JM; Venance L
    J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways.
    Ji X; Saha S; Kolpakova J; Guildford M; Tapper AR; Martin GE
    J Neurosci; 2017 May; 37(22):5463-5474. PubMed ID: 28473645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity.
    O'Halloran DM
    PLoS One; 2020; 15(3):e0230327. PubMed ID: 32150746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium control of triphasic hippocampal STDP.
    Bush D; Jin Y
    J Comput Neurosci; 2012 Dec; 33(3):495-514. PubMed ID: 22610510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and significance of spike-timing dependent plasticity.
    Karmarkar UR; Najarian MT; Buonomano DV
    Biol Cybern; 2002 Dec; 87(5-6):373-82. PubMed ID: 12461627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.
    Carta M; Srikumar BN; Gorlewicz A; Rebola N; Mulle C
    J Physiol; 2018 Feb; 596(4):703-716. PubMed ID: 29218821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potential timing determines dendritic calcium during striatal up-states.
    Kerr JN; Plenz D
    J Neurosci; 2004 Jan; 24(4):877-85. PubMed ID: 14749432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters.
    Thivierge JP; Rivest F; Monchi O
    Synapse; 2007 Jun; 61(6):375-90. PubMed ID: 17372980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in GluN2B-Containing NMDA Receptors Result in Distinct Long-Term Plasticity at Ipsilateral versus Contralateral Cortico-Striatal Synapses.
    Li W; Pozzo-Miller L
    eNeuro; 2019; 6(6):. PubMed ID: 31744842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex.
    Banerjee A; Meredith RM; Rodríguez-Moreno A; Mierau SB; Auberson YP; Paulsen O
    Cereb Cortex; 2009 Dec; 19(12):2959-69. PubMed ID: 19363149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the intraspinal calcium dynamics and its implications for the plasticity of spiking neurons.
    Yeung LC; Castellani GC; Shouval HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011907. PubMed ID: 14995647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.