These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22536175)

  • 1. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields.
    Pastoll H; Ramsden HL; Nolan MF
    Front Neural Circuits; 2012; 6():17. PubMed ID: 22536175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.
    Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME
    J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy.
    Booth CA; Ridler T; Murray TK; Ward MA; de Groot E; Goodfellow M; Phillips KG; Randall AD; Brown JT
    J Neurosci; 2016 Jan; 36(2):312-24. PubMed ID: 26758825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E.
    Hönigsperger C; Nigro MJ; Storm JF
    J Physiol; 2017 Feb; 595(3):739-757. PubMed ID: 27562026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by differences in stochastic current fluctuations.
    Dodson PD; Pastoll H; Nolan MF
    J Physiol; 2011 Jun; 589(Pt 12):2993-3008. PubMed ID: 21502290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of parasagittal slices for the investigation of dorsal-ventral organization of the rodent medial entorhinal cortex.
    Pastoll H; White M; Nolan M
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22491152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating grid cell scale and intrinsic frequencies via slow high-threshold conductances: A simplified model.
    Santos-Pata D; Zucca R; López-Carral H; Verschure PFMJ
    Neural Netw; 2019 Nov; 119():66-73. PubMed ID: 31401527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields.
    Garden DL; Dodson PD; O'Donnell C; White MD; Nolan MF
    Neuron; 2008 Dec; 60(5):875-89. PubMed ID: 19081381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory Connectivity Dominates the Fan Cell Network in Layer II of Lateral Entorhinal Cortex.
    Nilssen ES; Jacobsen B; Fjeld G; Nair RR; Blankvoort S; Kentros C; Witter MP
    J Neurosci; 2018 Nov; 38(45):9712-9727. PubMed ID: 30249791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D2 receptors regulate the action potential threshold by modulating T-type calcium channels in stellate cells of the medial entorhinal cortex.
    Jin X; Chen Q; Song Y; Zheng J; Xiao K; Shao S; Fu Z; Yi M; Yang Y; Huang Z
    J Physiol; 2019 Jul; 597(13):3363-3387. PubMed ID: 31049961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation by oscillations: implications of experimental data for theoretical models of grid cells.
    Giocomo LM; Hasselmo ME
    Hippocampus; 2008; 18(12):1186-99. PubMed ID: 19021252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex.
    Pastoll H; Garden DL; Papastathopoulos I; Sürmeli G; Nolan MF
    Elife; 2020 Feb; 9():. PubMed ID: 32039761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2009 Jun; 29(23):7625-30. PubMed ID: 19515931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2008 Sep; 28(38):9414-25. PubMed ID: 18799674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.
    Yoshida M; Giocomo LM; Boardman I; Hasselmo ME
    J Neurosci; 2011 Aug; 31(35):12683-94. PubMed ID: 21880929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
    Schmidt-Hieber C; Häusser M
    Nat Neurosci; 2013 Mar; 16(3):325-31. PubMed ID: 23396102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theta resonance and synaptic modulation scale activity patterns in the medial entorhinal cortex stellate cells.
    Katyare N; Sikdar SK
    Ann N Y Acad Sci; 2020 Oct; 1478(1):92-112. PubMed ID: 32794193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional properties of stellate cells in medial entorhinal cortex layer II.
    Rowland DC; Obenhaus HA; Skytøen ER; Zhang Q; Kentros CG; Moser EI; Moser MB
    Elife; 2018 Sep; 7():. PubMed ID: 30215597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.