These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22536872)

  • 1. Interpolative multidimensional scaling techniques for the identification of clusters in very large sequence sets.
    Hughes A; Ruan Y; Ekanayake S; Bae SH; Dong Q; Rho M; Qiu J; Fox G
    BMC Bioinformatics; 2012 Mar; 13 Suppl 2(Suppl 2):S9. PubMed ID: 22536872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.
    Nagar A; Hahsler M
    BMC Bioinformatics; 2013; 14 Suppl 11(Suppl 11):S2. PubMed ID: 24564200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional scaling for large genomic data sets.
    Tzeng J; Lu HH; Li WH
    BMC Bioinformatics; 2008 Apr; 9():179. PubMed ID: 18394154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences.
    Narayan NR; Weinmaier T; Laserna-Mendieta EJ; Claesson MJ; Shanahan F; Dabbagh K; Iwai S; DeSantis TZ
    BMC Genomics; 2020 Jan; 21(1):56. PubMed ID: 31952477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hc-OTU: A Fast and Accurate Method for Clustering Operational Taxonomic Units Based on Homopolymer Compaction.
    Park S; Choi HS; Lee B; Chun J; Won JH; Yoon S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):441-451. PubMed ID: 26930691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NoDe: a fast error-correction algorithm for pyrosequencing amplicon reads.
    Mysara M; Leys N; Raes J; Monsieurs P
    BMC Bioinformatics; 2015 Mar; 16(1):88. PubMed ID: 25888405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DBH: A de Bruijn graph-based heuristic method for clustering large-scale 16S rRNA sequences into OTUs.
    Wei ZG; Zhang SW
    J Theor Biol; 2017 Jul; 425():80-87. PubMed ID: 28454900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCRAPT: an iterative algorithm for clustering large 16S rRNA gene data sets.
    Luan T; Muralidharan HS; Alshehri M; Mittra I; Pop M
    Nucleic Acids Res; 2023 May; 51(8):e46. PubMed ID: 36912074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DACE: a scalable DP-means algorithm for clustering extremely large sequence data.
    Jiang L; Dong Y; Chen N; Chen T
    Bioinformatics; 2017 Mar; 33(6):834-842. PubMed ID: 28025198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNACLUST: accurate and efficient clustering of phylogenetic marker genes.
    Ghodsi M; Liu B; Pop M
    BMC Bioinformatics; 2011 Jun; 12():271. PubMed ID: 21718538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes.
    DeSantis TZ; Hugenholtz P; Keller K; Brodie EL; Larsen N; Piceno YM; Phan R; Andersen GL
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W394-9. PubMed ID: 16845035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A De Novo Robust Clustering Approach for Amplicon-Based Sequence Data.
    Bazin A; Debroas D; Mephu Nguifo E
    J Comput Biol; 2019 Jun; 26(6):618-624. PubMed ID: 30517025
    [No Abstract]   [Full Text] [Related]  

  • 13. Bios2mds: an R package for comparing orthologous protein families by metric multidimensional scaling.
    Pelé J; Bécu JM; Abdi H; Chabbert M
    BMC Bioinformatics; 2012 Jun; 13():133. PubMed ID: 22702410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA.
    DeSantis TZ; Dubosarskiy I; Murray SR; Andersen GL
    Bioinformatics; 2003 Aug; 19(12):1461-8. PubMed ID: 12912825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads.
    Bartram AK; Lynch MD; Stearns JC; Moreno-Hagelsieb G; Neufeld JD
    Appl Environ Microbiol; 2011 Jun; 77(11):3846-52. PubMed ID: 21460107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and comparison of very large metagenomes with fast clustering and functional annotation.
    Li W
    BMC Bioinformatics; 2009 Oct; 10():359. PubMed ID: 19863816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences.
    Sun Y; Cai Y; Liu L; Yu F; Farrell ML; McKendree W; Farmerie W
    Nucleic Acids Res; 2009 Jun; 37(10):e76. PubMed ID: 19417062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies.
    Schloss PD
    PLoS Comput Biol; 2010 Jul; 6(7):e1000844. PubMed ID: 20628621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing Alignment Time Complexity of Ultra-Large Sets of Sequences.
    Rubio-Largo Á; Vanneschi L; Castelli M; Vega-Rodríguez MA
    J Comput Biol; 2017 Nov; 24(11):1144-1154. PubMed ID: 28686466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface.
    Soh J; Dong X; Caffrey SM; Voordouw G; Sensen CW
    J Biotechnol; 2013 Sep; 167(4):393-403. PubMed ID: 23871656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.