These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22536939)

  • 1. Microarray-to-microarray transfer of reagents by snapping of two chips for cross-reactivity-free multiplex immunoassays.
    Li H; Bergeron S; Juncker D
    Anal Chem; 2012 Jun; 84(11):4776-83. PubMed ID: 22536939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snap Chip for Cross-reactivity-free and Spotter-free Multiplexed Sandwich Immunoassays.
    Li H; Bergeron S; Larkin H; Juncker D
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Chip-to-Chip Reagent Transfer for Cross-Reactivity-Free Multiplex Sandwich Immunoassays.
    Paquet-Mercier F; Juncker D; Bergeron S
    Methods Mol Biol; 2021; 2237():141-149. PubMed ID: 33237415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device.
    Liu Y; Wang W; Hu W; Lu Z; Zhou X; Li CM
    Biomed Microdevices; 2011 Aug; 13(4):769-77. PubMed ID: 21547537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an open stand-alone platform for regenerable automated microarrays.
    Kloth K; Niessner R; Seidel M
    Biosens Bioelectron; 2009 Mar; 24(7):2106-12. PubMed ID: 19110413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-chip protein arrays: force-based multiplex sandwich immunoassays with increased specificity.
    Blank K; Lankenau A; Mai T; Schiffmann S; Gilbert I; Hirler S; Albrecht C; Benoit M; Gaub HE; Clausen-Schaumann H
    Anal Bioanal Chem; 2004 Aug; 379(7-8):974-81. PubMed ID: 15103448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibody-microarrays on hybrid polymeric thin film-coated slides for multiple-protein immunoassays.
    Zhou X; Zhou J
    Methods Mol Biol; 2007; 382():259-71. PubMed ID: 18220237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile snap chip for high-density sub-nanoliter chip-to-chip reagent transfer.
    Li H; Munzar JD; Ng A; Juncker D
    Sci Rep; 2015 Jul; 5():11688. PubMed ID: 26148566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy.
    Liu J; Eddings MA; Miles AR; Bukasov R; Gale BK; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4296-301. PubMed ID: 19408947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays.
    Mulvaney SP; Myers KM; Sheehan PE; Whitman LJ
    Biosens Bioelectron; 2009 Jan; 24(5):1109-15. PubMed ID: 18656344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex detection platform for tumor markers and glucose in serum based on a microfluidic microparticle array.
    Zhu Q; Trau D
    Anal Chim Acta; 2012 Nov; 751():146-54. PubMed ID: 23084064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel detection and quantification using nine immunoassays in a protein microarray for drug from serum samples.
    Du H; Yang W; Xing W; Su Y; Cheng J
    Biomed Microdevices; 2005 Jun; 7(2):143-6. PubMed ID: 15940429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an antibody microarray based on agarose-coated slides.
    Lv LL; Liu BC; Zhang CX; Tang ZM; Zhang L; Lu ZH
    Electrophoresis; 2007 Feb; 28(3):406-13. PubMed ID: 17191279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dividable membrane with multi-reaction wells for microarray biochips.
    Chang YJ; Hu CY; Yin LT; Chang CH; Su HJ
    J Biosci Bioeng; 2008 Jul; 106(1):59-64. PubMed ID: 18691532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications.
    Dixit CK; Kaushik A
    Biochem Biophys Res Commun; 2012 Mar; 419(2):316-20. PubMed ID: 22342717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction.
    Oh SW; Moon JD; Lim HJ; Park SY; Kim T; Park J; Han MH; Snyder M; Choi EY
    FASEB J; 2005 Aug; 19(10):1335-7. PubMed ID: 15939735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid supports for microarray immunoassays.
    Kusnezow W; Hoheisel JD
    J Mol Recognit; 2003; 16(4):165-76. PubMed ID: 12898667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a sensitive microarray immunoassay and comparison with standard enzyme-linked immunoassay for cytokine analysis.
    Knight PR; Sreekumar A; Siddiqui J; Laxman B; Copeland S; Chinnaiyan A; Remick DG
    Shock; 2004 Jan; 21(1):26-30. PubMed ID: 14676680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free protein microfluidic array for parallel immunoassays.
    Wang ZH; Meng YH; Ying PQ; Qi C; Jin G
    Electrophoresis; 2006 Oct; 27(20):4078-85. PubMed ID: 17054092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.