BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22536977)

  • 1. Decoupling polymer properties to elucidate mechanisms governing cell behavior.
    Wang X; Boire TC; Bronikowski C; Zachman AL; Crowder SW; Sung HJ
    Tissue Eng Part B Rev; 2012 Oct; 18(5):396-404. PubMed ID: 22536977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy.
    Kim J; Kang Y; Tzeng SY; Green JJ
    Acta Biomater; 2016 Sep; 41():293-301. PubMed ID: 27262740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.
    Bello AB; Kim D; Kim D; Park H; Lee SH
    Tissue Eng Part B Rev; 2020 Apr; 26(2):164-180. PubMed ID: 31910095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering.
    Usprech J; Romero DA; Amon CH; Simmons CA
    Acta Biomater; 2017 Aug; 58():34-43. PubMed ID: 28532900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.
    Sun L; Danoux CB; Wang Q; Pereira D; Barata D; Zhang J; LaPointe V; Truckenmüller R; Bao C; Xu X; Habibovic P
    Acta Biomater; 2016 Sep; 42():364-377. PubMed ID: 27318269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose.
    Natarajan J; Madras G; Chatterjee K
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1591-1602. PubMed ID: 26893047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable biomaterials from synthetic, sequence-controlled polymers.
    Austin MJ; Rosales AM
    Biomater Sci; 2019 Jan; 7(2):490-505. PubMed ID: 30628589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological responses to physicochemical properties of biomaterial surface.
    Rahmati M; Silva EA; Reseland JE; A Heyward C; Haugen HJ
    Chem Soc Rev; 2020 Aug; 49(15):5178-5224. PubMed ID: 32642749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive polymers: towards a smart biomaterial for tissue engineering.
    Balint R; Cassidy NJ; Cartmell SH
    Acta Biomater; 2014 Jun; 10(6):2341-53. PubMed ID: 24556448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic polymers in pharmaceutical and biomedical sciences.
    Drotleff S; Lungwitz U; Breunig M; Dennis A; Blunk T; Tessmar J; Göpferich A
    Eur J Pharm Biopharm; 2004 Sep; 58(2):385-407. PubMed ID: 15296963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications.
    Hung HS; Hsu SH
    Curr Med Chem; 2020; 27(10):1634-1646. PubMed ID: 30215329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of polymers for medical applications.
    Ikada Y
    Biomaterials; 1994 Aug; 15(10):725-36. PubMed ID: 7986935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications.
    Piszko P; Kryszak B; Piszko A; Szustakiewicz K
    Polim Med; 2021; 51(1):43-50. PubMed ID: 34327876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications.
    Begum S; Hassan Z; Bräse S; Wöll C; Tsotsalas M
    Acc Chem Res; 2019 Jun; 52(6):1598-1610. PubMed ID: 30977634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically modified polymeric biomaterial surfaces: introduction.
    Piskin E
    Clin Mater; 1992; 11(1-4):3-7. PubMed ID: 10147749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved biomaterials for tissue engineering applications: surface modification of polymers.
    Vasita R; Shanmugam I K; Katt DS
    Curr Top Med Chem; 2008; 8(4):341-53. PubMed ID: 18393896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.