These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22537221)

  • 1. Concentric necklace nanolenses for optical near-field focusing and enhancement.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2012 May; 6(5):4341-8. PubMed ID: 22537221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual gold dimers investigated by far- and near-field imaging.
    Lereu AL; Sanchez-Mosteiro G; Ghenuche P; Quidant R; van Hulst NF
    J Microsc; 2008 Feb; 229(Pt 2):254-8. PubMed ID: 18304081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles.
    Pavaskar P; Theiss J; Cronin SB
    Opt Express; 2012 Jun; 20(13):14656-62. PubMed ID: 22714527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.
    Dadosh T; Sperling J; Bryant GW; Breslow R; Shegai T; Dyshel M; Haran G; Bar-Joseph I
    ACS Nano; 2009 Jul; 3(7):1988-94. PubMed ID: 19534506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing surface plasmon fields by far-field Raman imaging.
    Laurent G; Félidj N; Grand J; Aubard J; Lévi G; Hohenau A; Krenn JR; Aussenegg FR
    J Microsc; 2008 Feb; 229(Pt 2):189-96. PubMed ID: 18304071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering, field localization and local density of states in co-axial plasmonic nanowires.
    Lawrence N; Dal Negro L
    Opt Express; 2010 Jul; 18(15):16120-32. PubMed ID: 20720997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-difference time-domain studies of the optical properties of nanoshell dimers.
    Oubre C; Nordlander P
    J Phys Chem B; 2005 May; 109(20):10042-51. PubMed ID: 16852215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field diffraction in a two-dimensional V-groove and its role in SERS.
    Mechler M; Kukhlevsky SV; Mechler A; McNaughton D
    Phys Chem Chem Phys; 2011 Dec; 13(46):20772-8. PubMed ID: 21997130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons.
    Zhang H; Ho HP
    Opt Express; 2009 Nov; 17(23):21159-68. PubMed ID: 19997355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influences of particle number on hot spots in strongly coupled metal nanoparticles chain.
    Wang ZB; Luk'yanchuk BS; Guo W; Edwardson SP; Whitehead DJ; Li L; Liu Z; Watkins KG
    J Chem Phys; 2008 Mar; 128(9):094705. PubMed ID: 18331108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.