These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22537283)

  • 21. Optimized nanospherical layered alternating metal-dielectric probes for optical sensing.
    Kodali AK; Schulmerich MV; Palekar R; Llora X; Bhargava R
    Opt Express; 2010 Oct; 18(22):23302-13. PubMed ID: 21164671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles.
    Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL
    Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.
    Drozdowicz-Tomsia K; Baltar HT; Goldys EM
    Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical absorption of hyperbolic metamaterial with stochastic surfaces.
    Liu J; Naik GV; Ishii S; Devault C; Boltasseva A; Shalaev VM; Narimanov E
    Opt Express; 2014 Apr; 22(8):8893-901. PubMed ID: 24787778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold-silica-gold layered nanoparticle.
    Cong H; Toftegaard R; Arnbjerg J; Ogilby PR
    Langmuir; 2010 Mar; 26(6):4188-95. PubMed ID: 20000431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic nanoparticle networks for light and heat concentration.
    Sanchot A; Baffou G; Marty R; Arbouet A; Quidant R; Girard C; Dujardin E
    ACS Nano; 2012 Apr; 6(4):3434-40. PubMed ID: 22394263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.
    Taylor AB; Kim J; Chon JW
    Opt Express; 2012 Feb; 20(5):5069-81. PubMed ID: 22418312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres.
    Uchida T; Yoshikawa T; Tamura M; Iida T; Imura K
    J Phys Chem Lett; 2016 Sep; 7(18):3652-8. PubMed ID: 27596630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating.
    Rodríguez-González B; Attouchi F; Cardinal MF; Myroshnychenko V; Stéphan O; García de Abajo FJ; Liz-Marzán LM; Kociak M
    Langmuir; 2012 Jun; 28(24):9063-70. PubMed ID: 22452636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous layer gap plasmon resonators.
    Nielsen MG; Gramotnev DK; Pors A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2011 Sep; 19(20):19310-22. PubMed ID: 21996871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.
    Reddy NK; Pérez-Juste J; Pastoriza-Santos I; Lang PR; Dhont JK; Liz-Marzán LM; Vermant J
    ACS Nano; 2011 Jun; 5(6):4935-44. PubMed ID: 21545088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations.
    Guo L; Ferhan AR; Lee K; Kim DH
    Anal Chem; 2011 Apr; 83(7):2605-12. PubMed ID: 21388163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ; Gole AM; Stone JW; Sisco PN; Alkilany AM; Goldsmith EC; Baxter SC
    Acc Chem Res; 2008 Dec; 41(12):1721-30. PubMed ID: 18712884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical organophosphate sensor based upon gold nanoparticle functionalized fumed silica gel.
    Newman JD; Roberts JM; Blanchard GJ
    Anal Chem; 2007 May; 79(9):3448-54. PubMed ID: 17378539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collective resonances in gold nanoparticle arrays.
    Auguié B; Barnes WL
    Phys Rev Lett; 2008 Oct; 101(14):143902. PubMed ID: 18851529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.