BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22537391)

  • 1. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells.
    Gaete M; Muñoz R; Sánchez N; Tampe R; Moreno M; Contreras EG; Lee-Liu D; Larraín J
    Neural Dev; 2012 Apr; 7():13. PubMed ID: 22537391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.
    Taniguchi Y; Watanabe K; Mochii M
    BMC Dev Biol; 2014 Jun; 14():27. PubMed ID: 24941877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxm1 regulates neural progenitor fate during spinal cord regeneration.
    Pelzer D; Phipps LS; Thuret R; Gallardo-Dodd CJ; Baker SM; Dorey K
    EMBO Rep; 2021 Sep; 22(9):e50932. PubMed ID: 34427977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal Cord Transection In Xenopus laevis Tadpoles.
    Slater PG; Larraín J
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 34958088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Cord Cells from Pre-metamorphic Stages Differentiate into Neurons and Promote Axon Growth and Regeneration after Transplantation into the Injured Spinal Cord of Non-regenerative
    Méndez-Olivos EE; Muñoz R; Larraín J
    Front Cell Neurosci; 2017; 11():398. PubMed ID: 29326551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in
    Hamilton AM; Balashova OA; Borodinsky LN
    Elife; 2021 May; 10():. PubMed ID: 33955353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages.
    Lee-Liu D; Moreno M; Almonacid LI; Tapia VS; Muñoz R; von Marées J; Gaete M; Melo F; Larraín J
    Neural Dev; 2014 May; 9():12. PubMed ID: 24885550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord self-repair during tail regeneration in Polypedates maculatus and putative role of FGF1 as a neurotrophic factor.
    Hota J; Pati SS; Mahapatra PK
    J Chem Neuroanat; 2018 Mar; 88():70-75. PubMed ID: 29133075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal Cord Regeneration in Amphibians: A Historical Perspective.
    Freitas PD; Yandulskaya AS; Monaghan JR
    Dev Neurobiol; 2019 May; 79(5):437-452. PubMed ID: 30725532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute phase response in amputated tail stumps and neural tissue-preferential expression in tail bud embryos of the Xenopus neuronal pentraxin I gene.
    Hatta-Kobayashi Y; Toyama-Shirai M; Yamanaka T; Takamori M; Wakabayashi Y; Naora Y; Kunieda T; Fukazawa T; Kubo T
    Dev Growth Differ; 2016 Dec; 58(9):688-701. PubMed ID: 27804121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles.
    Beck CW; Christen B; Barker D; Slack JM
    Mech Dev; 2006 Sep; 123(9):674-88. PubMed ID: 16938438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early requirement of Hyaluronan for tail regeneration in Xenopus tadpoles.
    Contreras EG; Gaete M; Sánchez N; Carrasco H; Larraín J
    Development; 2009 Sep; 136(17):2987-96. PubMed ID: 19666825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of
    Tapia VS; Herrera-Rojas M; Larrain J
    Regeneration (Oxf); 2017 Feb; 4(1):21-35. PubMed ID: 28316792
    [No Abstract]   [Full Text] [Related]  

  • 19. Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles.
    Taniguchi Y; Sugiura T; Tazaki A; Watanabe K; Mochii M
    Dev Growth Differ; 2008 Feb; 50(2):109-20. PubMed ID: 18211586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Transplantation as a Method to Investigate Spinal Cord Regeneration in Regenerative and Nonregenerative
    Méndez-Olivos EE; Larraín J
    Cold Spring Harb Protoc; 2018 Dec; 2018(12):. PubMed ID: 29769390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.