BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2253781)

  • 21. The role of Pro20 in the isomerization of myotoxin a from Crotalus viridis viridis: folding and structural characterization of synthetic myotoxin a and its Pro20Gly homolog.
    Nedelkov D; O'Keefe MP; Chapman TL; Bieber AL
    Biochem Biophys Res Commun; 1997 Dec; 241(2):525-9. PubMed ID: 9425304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assignment of the aromatic 1H-NMR resonances of myotoxin a isolated from the venom of Crotalus viridis viridis.
    Henderson JT; Nieman RA; Bieber AL
    Biochim Biophys Acta; 1987 Aug; 914(2):152-61. PubMed ID: 3607069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiological studies of myotoxin a, isolated from prairie rattlesnake (Crotalus viridis viridis) venom, on murine skeletal muscles.
    Hong SJ; Chang CC
    Toxicon; 1985; 23(6):927-37. PubMed ID: 2420034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of myotoxin a from the venom of prairie rattlesnake (Crotalus viridis viridis).
    Cameron DL; Tu AT
    Biochemistry; 1977 May; 16(11):2546-53. PubMed ID: 861220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers.
    Mackessy SP
    Toxicon; 2010 Jul; 55(8):1463-74. PubMed ID: 20227433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antiserum to myotoxin from prairie rattlesnake (Crotalus viridis viridis) venom.
    Ownby CL; Woods WM; Odell GV
    Toxicon; 1979; 17(4):373-80. PubMed ID: 494319
    [No Abstract]   [Full Text] [Related]  

  • 27. The effects of myotoxin from midget faded rattlesnake (Crotalus viridis concolor) venom on neonatal rat myotubes in cell culture.
    Hayes CE; Bieber AL
    Toxicon; 1986; 24(2):169-73. PubMed ID: 3705095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid decline in blood antimyotoxin levels in the presence of myotoxin A from prairie rattlesnake (Crotalus viridis viridis) venom.
    Bober MA; Ownby CL
    J Toxicol Clin Toxicol; 1988; 26(5-6):303-12. PubMed ID: 3193486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the biological and immunological properties of fractions of prairie rattlesnake (Crotalus viridis viridis) venom.
    Ownby CL; Colberg TR
    Toxicon; 1987; 25(12):1329-42. PubMed ID: 3125631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of myonecrosis induced by snake venoms: venoms from the prairie rattlesnake (Crotalus viridis viridis), western diamondback rattlesnake (Crotalus atrox) and the Indian cobra (Naja naja naja).
    Ownby CL; Colberg TR
    Toxicon; 1988; 26(5):459-74. PubMed ID: 3188052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hypotensive activity of Crotalus atrox (western diamondback rattlesnake) venom: identification of its origin.
    de Mesquita LC; Selistre HS; Giglio JR
    Am J Trop Med Hyg; 1991 Mar; 44(3):345-53. PubMed ID: 2035756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of myotoxin alpha-like proteins in various snake venoms.
    Bober MA; Glenn JL; Straight RC; Ownby CL
    Toxicon; 1988; 26(7):665-73. PubMed ID: 3140426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management.
    Boldrini-França J; Corrêa-Netto C; Silva MM; Rodrigues RS; De La Torre P; Pérez A; Soares AM; Zingali RB; Nogueira RA; Rodrigues VM; Sanz L; Calvete JJ
    J Proteomics; 2010 Aug; 73(9):1758-76. PubMed ID: 20542151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Venom characteristics as an indicator of hybridization between Crotalus viridis viridis and Crotalus scutulatus scutulatus in New Mexico.
    Glenn JL; Straight RC
    Toxicon; 1990; 28(7):857-62. PubMed ID: 2120798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.
    Biardi JE; Coss RG
    Toxicon; 2011 Feb; 57(2):323-31. PubMed ID: 21184770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis.
    Takeya H; Oda K; Miyata T; Omori-Satoh T; Iwanaga S
    J Biol Chem; 1990 Sep; 265(27):16068-73. PubMed ID: 2398046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of myotoxin a with artificial membranes: Raman spectroscopic investigation.
    Liddle WK; Tu AT
    Biochemistry; 1985 Dec; 24(26):7635-40. PubMed ID: 4092030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis).
    Smith MT; Ortega J; Beaupre SJ
    Toxicon; 2014 Aug; 86():1-7. PubMed ID: 24814011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative assessment of variation in venom constituents within and between three nominal rattlesnake subspecies.
    Aird SD
    Toxicon; 1985; 23(6):1000-4. PubMed ID: 4095701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers.
    Graham RL; Graham C; McClean S; Chen T; O'Rourke M; Hirst D; Theakston D; Shaw C
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1587-92. PubMed ID: 16277978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.