BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22537919)

  • 21. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806.
    Makower AK; Schuurmans JM; Groth D; Zilliges Y; Matthijs HC; Dittmann E
    Appl Environ Microbiol; 2015 Jan; 81(2):544-54. PubMed ID: 25381232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of CeO
    Zhao G; Wu D; Cao S; Du W; Yin Y; Guo H
    Bull Environ Contam Toxicol; 2020 Jun; 104(6):834-839. PubMed ID: 32306073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of Cyanobacteria.
    Rogers ED; Henry TB; Twiner MJ; Gouffon JS; McPherson JT; Boyer GL; Sayler GS; Wilhelm SW
    Environ Sci Technol; 2011 Mar; 45(5):1962-9. PubMed ID: 21280650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The inhibition of Microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode.
    Wang X; Xiang P; Zhang Y; Wan Y; Lian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20631-20639. PubMed ID: 29752669
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Torres MA; Micheletto J; de Liz MV; Pagioro TA; Rocha Martins LR; Martins de Freitas A
    Photochem Photobiol Sci; 2020 Oct; 19(10):1470-1477. PubMed ID: 32857084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis.
    He X; Wert EC
    Water Res; 2016 Sep; 101():10-16. PubMed ID: 27240297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of glyphosate on microcystin-LR production and release from Microcystis aeruginosa at different temperatures.
    Ye J; Guan Y; Wu L; Wang C; Chen J; Zhou S; Xu C
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41961-41969. PubMed ID: 32700278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: Cytotoxic endpoints, production and release of microcystin-LR.
    Zhang M; Steinman AD; Xue Q; Zhao Y; Xu Y; Xie L
    J Hazard Mater; 2020 Nov; 399():123021. PubMed ID: 32937707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of nitrogen forms on the production of cyanobacterial toxin microcystin-IR by an isolated Microcystis aeruginosa.
    Yan H; Pan G; Zou H; Song L; Zhang M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2993-3003. PubMed ID: 15533019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values.
    Huang Y; Pan H; Liu H; Xi Y; Ren D
    Toxicon; 2019 Nov; 169():103-108. PubMed ID: 31494204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T).
    Zhang BH; Chen W; Li HQ; Yang JY; Zha DM; Duan YQ; N Hozzein W; Xiao M; Gao R; Li WJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4627-36. PubMed ID: 26767990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical modeling of Microcystis aeruginosa growth and [D-Leu
    Melina Celeste CM; Lorena R; Jorge Oswaldo A; Sandro G; Daniela S; Dario A; Leda G
    Harmful Algae; 2017 Jul; 67():13-25. PubMed ID: 28755715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa.
    He Y; Ma J; Joseph V; Wei Y; Liu M; Zhang Z; Li G; He Q; Li H
    Environ Pollut; 2020 Dec; 267():115576. PubMed ID: 32898730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chloramination.
    Ho L; Kayal N; Trolio R; Newcombe G
    Water Sci Technol; 2010; 62(2):442-50. PubMed ID: 20651451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols.
    Dziga D; Suda M; Bialczyk J; Czaja-Prokop U; Lechowski Z
    Environ Toxicol; 2007 Aug; 22(4):341-6. PubMed ID: 17607725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The possible role of microcystin (D-Leu
    Malanga G; Giannuzzi L; Hernando M
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Nov; 225():108575. PubMed ID: 31326544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in Microcystis aeruginosa cell integrity and variation in microcystin-LR and proteins during Tanfloc flocculation and floc storage.
    Hou J; Yang Z; Wang P; Wang C; Yang Y; Wang X
    Sci Total Environ; 2018 Jun; 626():264-273. PubMed ID: 29353776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release.
    Ni L; Jie X; Wang P; Li S; Wang G; Li Y; Li Y; Acharya K
    Chemosphere; 2015 Feb; 121():110-6. PubMed ID: 25496741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.
    Kinley CM; Iwinski KJ; Hendrikse M; Geer TD; Rodgers JH
    Ecotoxicol Environ Saf; 2017 Nov; 145():591-596. PubMed ID: 28802140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture.
    Dai R; Zhou Y; Chen Y; Zhang X; Yan Y; An D
    Sci Total Environ; 2019 Feb; 651(Pt 1):706-712. PubMed ID: 30245426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.