These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22538184)

  • 1. Formation of one-way-structured cultured neuronal networks in microfluidic devices combining with micropatterning techniques.
    Takayama Y; Kotake N; Haga T; Suzuki T; Mabuchi K
    J Biosci Bioeng; 2012 Jul; 114(1):92-5. PubMed ID: 22538184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabrication- and microfluidics-based patterning of cultured neuronal network.
    Takayama Y; Kotake N; Haga T; Suzuki T; Mabuchi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3613-6. PubMed ID: 22255121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropillar-based microfluidic device to regulate neurite networks of uniform-sized neurospheres.
    Kim DE; Lee JM; Ahrberg CD; Shaker MR; Lee JH; Sun W; Chung BG
    Electrophoresis; 2019 Feb; 40(3):419-424. PubMed ID: 29931692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tension-induced neurite growth in microfluidic channels.
    Nguyen TD; Hogue IB; Cung K; Purohit PK; McAlpine MC
    Lab Chip; 2013 Sep; 13(18):3735-40. PubMed ID: 23884453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic devices for culturing primary mammalian neurons at low densities.
    Millet LJ; Stewart ME; Sweedler JV; Nuzzo RG; Gillette MU
    Lab Chip; 2007 Aug; 7(8):987-94. PubMed ID: 17653340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering connectivity by multiscale micropatterning of individual populations of neurons.
    Albers J; Toma K; Offenhäusser A
    Biotechnol J; 2015 Feb; 10(2):332-8. PubMed ID: 25512037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers.
    Peyrin JM; Deleglise B; Saias L; Vignes M; Gougis P; Magnifico S; Betuing S; Pietri M; Caboche J; Vanhoutte P; Viovy JL; Brugg B
    Lab Chip; 2011 Nov; 11(21):3663-73. PubMed ID: 21922081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of in vitro neural functional connectivity on a neurofluidic device.
    Shen X; Wu J; Wang Z; Chen T
    Electrophoresis; 2019 Nov; 40(22):2996-3004. PubMed ID: 31556965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microchannels on neurite growth and architecture.
    Mahoney MJ; Chen RR; Tan J; Saltzman WM
    Biomaterials; 2005 Mar; 26(7):771-8. PubMed ID: 15350782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular microstructure design to build neuronal networks of defined functional connectivity.
    Forró C; Thompson-Steckel G; Weaver S; Weydert S; Ihle S; Dermutz H; Aebersold MJ; Pilz R; Demkó L; Vörös J
    Biosens Bioelectron; 2018 Dec; 122():75-87. PubMed ID: 30243047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development.
    Shelly M; Lee SI; Suarato G; Meng Y; Pautot S
    Methods Mol Biol; 2017; 1493():321-343. PubMed ID: 27787862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response.
    Xiao RR; Zeng WJ; Li YT; Zou W; Wang L; Pei XF; Xie M; Huang WH
    Anal Chem; 2013 Aug; 85(16):7842-50. PubMed ID: 23865632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration.
    Lee CY; Romanova EV; Sweedler JV
    J Neural Eng; 2013 Jun; 10(3):036020. PubMed ID: 23656702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.
    Li L; Ren L; Liu W; Wang JC; Wang Y; Tu Q; Xu J; Liu R; Zhang Y; Yuan MS; Li T; Wang J
    Anal Chem; 2012 Aug; 84(15):6444-53. PubMed ID: 22793989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.
    Millet LJ; Stewart ME; Nuzzo RG; Gillette MU
    Lab Chip; 2010 Jun; 10(12):1525-35. PubMed ID: 20390196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compartmentalized culture device for studying the axons of CNS neurons.
    Cheng MY; Ho HH; Huang TK; Chuang CF; Chen HY; Chung HW; Leong WC; Yang WC; Fu CC; Hsu YH; Chang YC
    Anal Biochem; 2017 Dec; 539():11-21. PubMed ID: 28942943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.