BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 22538547)

  • 1. Synthesis, Optimization, and Characterization of Cellulase Enzyme Obtained from Thermotolerant
    Fouda A; Alshallash KS; Atta HM; El Gamal MS; Bakry MM; Alawam AS; Salem SS
    J Microbiol Biotechnol; 2024 Jan; 34(1):207-223. PubMed ID: 37940165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of ionic liquid stable cellulase produced by the marine bacterium Pseudoalteromonas sp. isolated from brown alga Sargassum polycystum C. Agardh.
    Trivedi N; Gupta V; Reddy CR; Jha B
    Bioresour Technol; 2013 Mar; 132():313-9. PubMed ID: 23416618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced crystalline cellulose degradation by a novel metagenome-derived cellulase enzyme.
    Kholousi Adab F; Mehdi Yaghoobi M; Gharechahi J
    Sci Rep; 2024 Apr; 14(1):8560. PubMed ID: 38609443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential.
    Tuesta-Popolizio DA; Velázquez-Fernández JB; Rodriguez-Campos J; Contreras-Ramos SM
    World J Microbiol Biotechnol; 2021 Aug; 37(9):147. PubMed ID: 34363544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Status of Mining, Modification, and Application of Cellulases in Bioactive Substance Extraction.
    Hu Y; Kang G; Wang L; Gao M; Wang P; Yang D; Huang H
    Curr Issues Mol Biol; 2021 Jul; 43(2):687-703. PubMed ID: 34287263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halophilic archaea and their potential to generate renewable fuels and chemicals.
    Kasirajan L; Maupin-Furlow JA
    Biotechnol Bioeng; 2021 Mar; 118(3):1066-1090. PubMed ID: 33241850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halophiles and Their Vast Potential in Biofuel Production.
    Amoozegar MA; Safarpour A; Noghabi KA; Bakhtiary T; Ventosa A
    Front Microbiol; 2019; 10():1895. PubMed ID: 31507545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Archaeal Chitinase With a Secondary Capacity for Catalyzing Cellulose and Its Biotechnological Applications in Shell and Straw Degradation.
    Chen L; Wei Y; Shi M; Li Z; Zhang SH
    Front Microbiol; 2019; 10():1253. PubMed ID: 31244795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?
    Debez A; Belghith I; Friesen J; Montzka C; Elleuche S
    J Biol Eng; 2017; 11():27. PubMed ID: 28883890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart.
    Tokunaga H; Maeda J; Arakawa T; Tokunaga M
    Protein J; 2017 Jun; 36(3):228-237. PubMed ID: 28425008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation.
    Batista-García RA; Balcázar-López E; Miranda-Miranda E; Sánchez-Reyes A; Cuervo-Soto L; Aceves-Zamudio D; Atriztán-Hernández K; Morales-Herrera C; Rodríguez-Hernández R; Folch-Mallol J
    PLoS One; 2014; 9(8):e105893. PubMed ID: 25162614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation.
    Sinha R; Khare SK
    Front Microbiol; 2014; 5():165. PubMed ID: 24782853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and Characterizing the Thermophilic and Detergent Stable Cellulase CelMytB from Saccharophagus sp. Myt-1.
    Sakatoku A; Tanaka D; Kamachi H; Nakamura S
    Indian J Microbiol; 2014 Mar; 54(1):20-6. PubMed ID: 24426162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes.
    Li X; Yu HY
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1357-65. PubMed ID: 24037323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus.
    Li X; Wang HL; Li T; Yu HY
    Biotechnol Lett; 2012 Aug; 34(8):1531-6. PubMed ID: 22538547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of novel organic-solvent-tolerant β-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20.
    Li X; Yu HY
    FEMS Microbiol Lett; 2012 Apr; 329(2):204-11. PubMed ID: 22324975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10.
    Li X; Yu HY
    Int J Biol Macromol; 2013 Nov; 62():101-6. PubMed ID: 23999019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18.
    Li X; Yu HY
    Folia Microbiol (Praha); 2012 Sep; 57(5):447-53. PubMed ID: 22581065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring.
    Irfan M; Tayyab A; Hasan F; Khan S; Badshah M; Shah AA
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1390-1402. PubMed ID: 28130767
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.