These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22538762)

  • 1. Sodium methoxide: a simple but highly efficient catalyst for the direct amidation of esters.
    Ohshima T; Hayashi Y; Agura K; Fujii Y; Yoshiyama A; Mashima K
    Chem Commun (Camb); 2012 Jun; 48(44):5434-6. PubMed ID: 22538762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct amidation of aldoses and decarboxylative amidation of alpha-keto acids: an efficient conjugation method for unprotected carbohydrate molecules.
    Cho CC; Liu JN; Chien CH; Shie JJ; Chen YC; Fang JM
    J Org Chem; 2009 Feb; 74(4):1549-56. PubMed ID: 19159243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanum(III) triflate catalyzed direct amidation of esters.
    Morimoto H; Fujiwara R; Shimizu Y; Morisaki K; Ohshima T
    Org Lett; 2014 Apr; 16(7):2018-21. PubMed ID: 24660939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clean, reusable and low cost heterogeneous catalyst for amide synthesis.
    Comerford JW; Clark JH; Macquarrie DJ; Breeden SW
    Chem Commun (Camb); 2009 May; (18):2562-4. PubMed ID: 19532890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-catalyzed direct amination of ortho-functionalized haloarenes with sodium azide as the amino source.
    Zhao H; Fu H; Qiao R
    J Org Chem; 2010 May; 75(10):3311-6. PubMed ID: 20359203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective α-amination and α-acylation of esters and amides via dual reactivity of O-acylhydroxylamines toward zinc enolates.
    McDonald SL; Wang Q
    Chem Commun (Camb); 2014 Mar; 50(19):2535-8. PubMed ID: 24463701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonites.
    Stoica G; Abelló S; Pérez-Ramírez J
    ChemSusChem; 2009; 2(4):301-4. PubMed ID: 19197926
    [No Abstract]   [Full Text] [Related]  

  • 8. Efficient copper(II)-catalyzed transamidation of non-activated primary carboxamides and ureas with amines.
    Zhang M; Imm S; Bähn S; Neubert L; Neumann H; Beller M
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3905-9. PubMed ID: 22407667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cu(I)-catalyzed C-H alpha-amination of esters. Direct synthesis of hydantoins.
    Zhao B; Du H; Shi Y
    J Am Chem Soc; 2008 Jun; 130(23):7220-1. PubMed ID: 18473463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Managing highly coordinative substrates in asymmetric catalysis: a catalytic asymmetric amination with a lanthanum-based ternary catalyst.
    Mashiko T; Kumagai N; Shibasaki M
    J Am Chem Soc; 2009 Oct; 131(41):14990-9. PubMed ID: 19785408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Free Iron(III) Chloride-Catalyzed Direct Amidation of Esters.
    Mkhonazi BD; Shandu M; Tshinavhe R; Simelane SB; Moshapo PT
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32110915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of α-amino acid amides: ruthenium-catalyzed amination of α-hydroxy amides.
    Zhang M; Imm S; Bähn S; Neumann H; Beller M
    Angew Chem Int Ed Engl; 2011 Nov; 50(47):11197-201. PubMed ID: 21987500
    [No Abstract]   [Full Text] [Related]  

  • 13. Catalytic asymmetric Michael reactions with enamides as nucleophiles.
    Berthiol F; Matsubara R; Kawai N; Kobayashi S
    Angew Chem Int Ed Engl; 2007; 46(41):7803-5. PubMed ID: 17768749
    [No Abstract]   [Full Text] [Related]  

  • 14. Chiral calcium organophosphate-catalyzed enantioselective electrophilic amination of enamides.
    Drouet F; Lalli C; Liu H; Masson G; Zhu J
    Org Lett; 2011 Jan; 13(1):94-7. PubMed ID: 21121643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic asymmetric amination of N-nonsubstituted α-alkoxycarbonyl amides: concise enantioselective synthesis of mycestericin F and G.
    Berhal F; Takechi S; Kumagai N; Shibasaki M
    Chemistry; 2011 Feb; 17(6):1915-21. PubMed ID: 21274942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of new hydrogenations of imines and benign reductive hydroaminations: zinc triflate as a catalyst.
    Werkmeister S; Fleischer S; Zhou S; Junge K; Beller M
    ChemSusChem; 2012 Apr; 5(4):777-82. PubMed ID: 22323333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel-catalyzed beta-boration of alpha,beta-unsaturated esters and amides with bis(pinacolato)diboron.
    Hirano K; Yorimitsu H; Oshima K
    Org Lett; 2007 Nov; 9(24):5031-3. PubMed ID: 17973483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct asymmetric reductive amination.
    Steinhuebel D; Sun Y; Matsumura K; Sayo N; Saito T
    J Am Chem Soc; 2009 Aug; 131(32):11316-7. PubMed ID: 19637921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Chem Commun (Camb); 2010 Jan; 46(3):412-4. PubMed ID: 20066309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano sulfated titania as solid acid catalyst in direct synthesis of fatty acid amides.
    Hosseini-Sarvari M; Sodagar E; Doroodmand MM
    J Org Chem; 2011 Apr; 76(8):2853-9. PubMed ID: 21405011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.