BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22538768)

  • 1. Methane storage in molecular nanostructures.
    Adisa OO; Cox BJ; Hill JM
    Nanoscale; 2012 Jun; 4(11):3295-307. PubMed ID: 22538768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.
    Malek K; Sahimi M
    J Chem Phys; 2010 Jan; 132(1):014310. PubMed ID: 20078164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Environ Sci Technol; 2012 Sep; 46(18):10341-8. PubMed ID: 22888826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of methane adsorption on single-walled carbon nanotubes.
    Albesa AG; Fertitta EA; Vicente JL
    Langmuir; 2010 Jan; 26(2):786-95. PubMed ID: 19899786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale tubular vessels for storage of methane at ambient temperatures.
    Kowalczyk P; Solarz L; Do DD; Samborski A; MacElroy JM
    Langmuir; 2006 Oct; 22(21):9035-40. PubMed ID: 17014151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations on methane uptake in tunable pillared porous graphene hybrid architectures.
    Jiang H; Cheng XL
    J Mol Graph Model; 2018 Oct; 85():223-231. PubMed ID: 30227367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.
    Rawat DS; Krungleviciute V; Heroux L; Bulut M; Calbi MM; Migone AD
    Langmuir; 2008 Dec; 24(23):13465-9. PubMed ID: 18954094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks.
    Getman RB; Bae YS; Wilmer CE; Snurr RQ
    Chem Rev; 2012 Feb; 112(2):703-23. PubMed ID: 22188435
    [No Abstract]   [Full Text] [Related]  

  • 9. Methane adsorption on aggregates of fullerenes: site-selective storage capacities and adsorption energies.
    Kaiser A; Zöttl S; Bartl P; Leidlmair C; Mauracher A; Probst M; Denifl S; Echt O; Scheier P
    ChemSusChem; 2013 Jul; 6(7):1235-44. PubMed ID: 23744834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of gases in carbon nanotubes: are defect interstitial sites important?
    Labrosse MR; Shi W; Johnson JK
    Langmuir; 2008 Sep; 24(17):9430-9. PubMed ID: 18683959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CO formation reaction pathway in steam methane reforming by rhodium.
    van Grootel PW; Hensen EJ; van Santen RA
    Langmuir; 2010 Nov; 26(21):16339-48. PubMed ID: 20919687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrogen storage nanotank: lithium-organic pillared graphite.
    Han SS; Jang SS
    Chem Commun (Camb); 2009 Sep; (36):5427-9. PubMed ID: 19724807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane storage in bottle-like nanocapsules.
    Vakhrushev AV; Suyetin MV
    Nanotechnology; 2009 Mar; 20(12):125602. PubMed ID: 19420471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of H2 adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures.
    Lamonte K; Gómez Gualdrón DA; Cabrales-Navarro FA; Scanlon LG; Sandi G; Feld W; Balbuena PB
    J Phys Chem B; 2008 Dec; 112(49):15775-82. PubMed ID: 19367822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study.
    Mahdizadeh SJ; Tayyari SF
    J Mol Model; 2012 Jun; 18(6):2699-708. PubMed ID: 22102208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.