BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22539)

  • 1. Association-dissociation of the flavoprotein hog kidney D-amino acid oxidase. Determination of the monomer-dimer equilibrium constant and the energetics of subunit association.
    Horiike K; Shiga K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 Nov; 82(5):1247-55. PubMed ID: 22539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between D-amino acid oxidase and small molecules.
    Horiike K; Shiga K; Isomoto A; Yamano T
    J Biochem; 1976 Nov; 80(5):1073-83. PubMed ID: 12150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical analysis of ligand-induced monomerization and dimerization in the monomer dimer equilibrium of proteins. Application to D-amino acid oxidase.
    Horiike K; Shiga K; Isomoto A; Yamano T
    J Biochem; 1977 Jan; 81(1):179-86. PubMed ID: 14929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-association mode of a flavoenzyme D-amino acid oxidase from hog kidney. II. Stoichiometry of holoenzyme association and energetics of subunit association.
    Tojo H; Horiike K; Shiga K; Nishina Y; Watari H; Yamano T
    J Biol Chem; 1985 Oct; 260(23):12615-21. PubMed ID: 2864343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH on the interaction of benzoate and D-amino acid oxidase.
    Quay S; Massey V
    Biochemistry; 1977 Jul; 16(15):3348-54. PubMed ID: 19047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active unit of D-amino acid oxidase from hog kidney.
    Huet M
    Biochim Biophys Acta; 1973 Oct; 322(2):234-44. PubMed ID: 4148773
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure and function of D-amino acid oxidase. IX. Changes in the fluorescence polarization of FAD upon complex formation.
    Yagi K; Tanaka F; Oishi N
    J Biochem; 1975 Feb; 77(2):463-8. PubMed ID: 236295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and equilibrium studies on the interaction of reduced flavoprotein D-amino acid oxidase with pyridine carboxylates.
    Nishina Y; Tojo H; Ushijima H; Shiga K
    J Biochem; 1987 Aug; 102(2):327-32. PubMed ID: 2889727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional difference between the monomer and the dimer of D-amino acid oxidase.
    Shiga K; Shiga T
    Arch Biochem Biophys; 1971 Aug; 145(2):701-2. PubMed ID: 4399431
    [No Abstract]   [Full Text] [Related]  

  • 10. Self-association mode of a flavoenzyme D-amino acid oxidase from hog kidney. I. Analysis of apparent weight-average molecular weight data for the apoenzyme in terms of models.
    Tojo H; Horiike K; Shiga K; Nishina Y; Watari H; Yamano T
    J Biol Chem; 1985 Oct; 260(23):12607-14. PubMed ID: 2864342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH dependence of catalysis of the monomer of hog kidney D-amino acid oxidase.
    Horiike K; Shiga K; Nishina Y; Yamano T
    Med J Osaka Univ; 1976 Dec; 27(1-2):33-46. PubMed ID: 20559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic features of monomers and dimers in high- and low-temperature conformational states of D-amino acid oxidase.
    Shiga K; Shiga T
    Biochim Biophys Acta; 1972 Apr; 263(2):294-303. PubMed ID: 4402304
    [No Abstract]   [Full Text] [Related]  

  • 13. Gel chromatographic evidence for the participation of the higher polymers in the self-association system of a flavoenzyme D-amino acid oxidase.
    Tojo H; Horiike K; Shiga K; Nishina Y; Nozaki M; Watari H; Yamano T
    J Biochem; 1984 Jan; 95(1):1-6. PubMed ID: 6142881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R
    Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between 1,4-thiazine derivatives and D-amino-acid oxidase.
    Ricci G; Nardini M; Caccuri AM; Federici G
    Biochim Biophys Acta; 1983 Oct; 748(1):40-7. PubMed ID: 6137240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the inhibition of hog kidney D-amino acid oxidase by short-, medium- and long-chain fatty acids.
    Brachet P; Carreira S; Puigserver A
    Biochem Int; 1990 Dec; 22(5):837-42. PubMed ID: 1983068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of D-amino acid oxidase. II. Terminal structure and amino acid composition of hog kidney D-amino acid oxidase.
    Kotaki A; Harada M; Yagi K
    J Biochem; 1967 May; 61(5):598-605. PubMed ID: 4383485
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic assay for HIV proteinase subunit dissociation.
    Kuzmic P
    Biochem Biophys Res Commun; 1993 Mar; 191(3):998-1003. PubMed ID: 8466539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the interactions between flavoprotein and quasi-substrates. Circular dichroism spectra of D-amino acid oxidase complexes.
    Shiga K; Horiike K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 May; 81(5):1465-72. PubMed ID: 19436
    [No Abstract]   [Full Text] [Related]  

  • 20. Properties of D-amino-acid oxidase from Rhodotorula gracilis.
    Pilone Simonetta M; Pollegioni L; Casalin P; Curti B; Ronchi S
    Eur J Biochem; 1989 Mar; 180(1):199-204. PubMed ID: 2565232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.