These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22539437)

  • 1. Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery.
    Mirzaei M; Pascovici D; Atwell BJ; Haynes PA
    Proteomics; 2012 Mar; 12(6):864-77. PubMed ID: 22539437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shotgun proteomic analysis of long-distance drought signaling in rice roots.
    Mirzaei M; Soltani N; Sarhadi E; Pascovici D; Keighley T; Salekdeh GH; Haynes PA; Atwell BJ
    J Proteome Res; 2012 Jan; 11(1):348-58. PubMed ID: 22047206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone.
    Leng H; Lu M; Wan X
    Physiol Plant; 2013 Mar; 147(3):329-39. PubMed ID: 22686493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.
    Mohammadi PP; Moieni A; Komatsu S
    Amino Acids; 2012 Nov; 43(5):2137-52. PubMed ID: 22543724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought.
    Shu L; Lou Q; Ma C; Ding W; Zhou J; Wu J; Feng F; Lu X; Luo L; Xu G; Mei H
    Proteomics; 2011 Nov; 11(21):4122-38. PubMed ID: 21818852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.
    Wu Y; Mirzaei M; Pascovici D; Chick JM; Atwell BJ; Haynes PA
    J Proteomics; 2016 Jun; 143():73-82. PubMed ID: 27195813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan.
    Liu JX; Bennett J
    Mol Plant; 2011 Jan; 4(1):59-69. PubMed ID: 20643753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice.
    Seo JS; Joo J; Kim MJ; Kim YK; Nahm BH; Song SI; Cheong JJ; Lee JS; Kim JK; Choi YD
    Plant J; 2011 Mar; 65(6):907-21. PubMed ID: 21332845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).
    Grondin A; Mauleon R; Vadez V; Henry A
    Plant Cell Environ; 2016 Feb; 39(2):347-65. PubMed ID: 26226878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of rice leaf sheath during drought stress.
    Ali GM; Komatsu S
    J Proteome Res; 2006 Feb; 5(2):396-403. PubMed ID: 16457606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of rice leaves during drought stress and recovery.
    Salekdeh GH; Siopongco J; Wade LJ; Ghareyazie B; Bennett J
    Proteomics; 2002 Sep; 2(9):1131-45. PubMed ID: 12362332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress.
    Peleg Z; Reguera M; Tumimbang E; Walia H; Blumwald E
    Plant Biotechnol J; 2011 Sep; 9(7):747-58. PubMed ID: 21284800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings.
    Gorantla M; Babu PR; Lachagari VB; Reddy AM; Wusirika R; Bennetzen JL; Reddy AR
    J Exp Bot; 2007; 58(2):253-65. PubMed ID: 17132712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought.
    Navarro-Ródenas A; Bárzana G; Nicolás E; Carra A; Schubert A; Morte A
    Mol Plant Microbe Interact; 2013 Sep; 26(9):1068-78. PubMed ID: 23656332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of OsPIP2;7, a water channel protein in rice.
    Li GW; Zhang MH; Cai WM; Sun WN; Su WA
    Plant Cell Physiol; 2008 Dec; 49(12):1851-8. PubMed ID: 18988636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance.
    Quan R; Hu S; Zhang Z; Zhang H; Zhang Z; Huang R
    Plant Biotechnol J; 2010 May; 8(4):476-88. PubMed ID: 20233336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of proteins and phosphoproteins in rice under drought stress.
    Ke Y; Han G; He H; Li J
    Biochem Biophys Res Commun; 2009 Jan; 379(1):133-8. PubMed ID: 19103168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species.
    Hu L; Wang Z; Huang B
    Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment.
    Lian HL; Yu X; Lane D; Sun WN; Tang ZC; Su WA
    Cell Res; 2006 Jul; 16(7):651-60. PubMed ID: 16773042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different drought resistance strategies.
    Almeida-Rodriguez AM; Cooke JE; Yeh F; Zwiazek JJ
    Physiol Plant; 2010 Dec; 140(4):321-33. PubMed ID: 20681973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.