These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22539703)

  • 21. Highly ordered arrangement of single neurons in orientation pinwheels.
    Ohki K; Chung S; Kara P; Hübener M; Bonhoeffer T; Reid RC
    Nature; 2006 Aug; 442(7105):925-8. PubMed ID: 16906137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex.
    Ohki K; Chung S; Ch'ng YH; Kara P; Reid RC
    Nature; 2005 Feb; 433(7026):597-603. PubMed ID: 15660108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory experience modifies feature map relationships in visual cortex.
    Cloherty SL; Hughes NJ; Hietanen MA; Bhagavatula PS; Goodhill GJ; Ibbotson MR
    Elife; 2016 Jun; 5():. PubMed ID: 27310531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron's location in the V1 orientation map emerges late in time.
    Liu YJ; Hashemi-Nezhad M; Lyon DC
    Neuroscience; 2013 Jan; 229():100-17. PubMed ID: 23159311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation specificity of contrast adaptation in mouse primary visual cortex.
    Stroud AC; Ledue EE; Crowder NA
    J Neurophysiol; 2012 Sep; 108(5):1381-91. PubMed ID: 22696541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J; Hu D; Vidyasagar TR
    Neuroscience; 2012 Dec; 225():55-64. PubMed ID: 22963796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    J Neurophysiol; 1997 Jun; 77(6):3381-5. PubMed ID: 9212282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural maps versus salt-and-pepper organization in visual cortex.
    Kaschube M
    Curr Opin Neurobiol; 2014 Feb; 24(1):95-102. PubMed ID: 24492085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mexican hats and pinwheels in visual cortex.
    Kang K; Shelley M; Sompolinsky H
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2848-53. PubMed ID: 12601163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns.
    Polimeni JR; Granquist-Fraser D; Wood RJ; Schwartz EL
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4158-63. PubMed ID: 15746240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting visual acuity from the structure of visual cortex.
    Srinivasan S; Carlo CN; Stevens CF
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7815-20. PubMed ID: 26056277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular signatures in the primary visual cortex of phylogeny and placentation.
    Lewitus E; Sherwood CC; Hof PR
    Brain Struct Funct; 2012 Apr; 217(2):531-47. PubMed ID: 21863312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haphazard wiring of simple receptive fields and orientation columns in visual cortex.
    Ringach DL
    J Neurophysiol; 2004 Jul; 92(1):468-76. PubMed ID: 14999045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Not all brains are made the same: new views on brain scaling in evolution.
    Herculano-Houzel S
    Brain Behav Evol; 2011; 78(1):22-36. PubMed ID: 21691045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial frequency maps in cat visual cortex.
    Issa NP; Trepel C; Stryker MP
    J Neurosci; 2000 Nov; 20(22):8504-14. PubMed ID: 11069958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reprogramming of orientation columns in visual cortex: a domino effect.
    Bachatene L; Bharmauria V; Cattan S; Rouat J; Molotchnikoff S
    Sci Rep; 2015 Mar; 5():9436. PubMed ID: 25801392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotropic connections generate functional asymmetrical behavior in visual cortical cells.
    Wörgötter F; Niebur E; Koch C
    J Neurophysiol; 1991 Aug; 66(2):444-59. PubMed ID: 1774581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping.
    Humphrey AL; Skeen LC; Norton TT
    J Comp Neurol; 1980 Aug; 192(3):549-66. PubMed ID: 7419744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.