These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22539862)

  • 1. BOLD responses in somatosensory cortices better reflect heat sensation than pain.
    Moulton EA; Pendse G; Becerra LR; Borsook D
    J Neurosci; 2012 Apr; 32(17):6024-31. PubMed ID: 22539862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct and shared cerebral activations in processing innocuous versus noxious contact heat revealed by functional magnetic resonance imaging.
    Tseng MT; Tseng WY; Chao CC; Lin HE; Hsieh ST
    Hum Brain Mapp; 2010 May; 31(5):743-57. PubMed ID: 19823988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI.
    Chen JI; Ha B; Bushnell MC; Pike B; Duncan GH
    J Neurophysiol; 2002 Jul; 88(1):464-74. PubMed ID: 12091568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal summation of heat pain in humans: Evidence supporting thalamocortical modulation.
    Tran TD; Wang H; Tandon A; Hernandez-Garcia L; Casey KL
    Pain; 2010 Jul; 150(1):93-102. PubMed ID: 20494516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat.
    Moulton EA; Keaser ML; Gullapalli RP; Greenspan JD
    J Neurophysiol; 2005 Apr; 93(4):2183-93. PubMed ID: 15601733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain.
    Casey KL; Minoshima S; Morrow TJ; Koeppe RA
    J Neurophysiol; 1996 Jul; 76(1):571-81. PubMed ID: 8836245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study.
    Baumgärtner U; Iannetti GD; Zambreanu L; Stoeter P; Treede RD; Tracey I
    J Neurophysiol; 2010 Nov; 104(5):2863-72. PubMed ID: 20739597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of major depressive disorder with altered functional brain response during anticipation and processing of heat pain.
    Strigo IA; Simmons AN; Matthews SC; Craig AD; Paulus MP
    Arch Gen Psychiatry; 2008 Nov; 65(11):1275-84. PubMed ID: 18981339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illusion of pain: pre-existing knowledge determines brain activation of 'imagined allodynia'.
    Krämer HH; Stenner C; Seddigh S; Bauermann T; Birklein F; Maihöfner C
    J Pain; 2008 Jun; 9(6):543-51. PubMed ID: 18455481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional imaging of brain responses to pain. A review and meta-analysis (2000).
    Peyron R; Laurent B; García-Larrea L
    Neurophysiol Clin; 2000 Oct; 30(5):263-88. PubMed ID: 11126640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric lateralization of somatosensory processing.
    Coghill RC; Gilron I; Iadarola MJ
    J Neurophysiol; 2001 Jun; 85(6):2602-12. PubMed ID: 11387404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain.
    Lenoir C; Algoet M; Mouraux A
    J Physiol; 2018 Oct; 596(19):4767-4787. PubMed ID: 30085357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution functional magnetic resonance imaging mapping of noxious heat and tactile activations along the central sulcus in New World monkeys.
    Chen LM; Dillenburger BC; Wang F; Friedman RM; Avison MJ
    Pain; 2011 Mar; 152(3):522-532. PubMed ID: 21177033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical responses to thermal pain depend on stimulus size: a functional MRI study.
    Apkarian AV; Gelnar PA; Krauss BR; Szeverenyi NM
    J Neurophysiol; 2000 May; 83(5):3113-22. PubMed ID: 10805705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of unpleasant and pain thresholds of thermal stimuli in the orofacial regions: a psychophysical study using quantitative sensory testing in healthy young men.
    Kim HK; Kim ME
    Somatosens Mot Res; 2018 Jun; 35(2):139-147. PubMed ID: 30107761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supraspinal characterization of the thermal grill illusion with fMRI.
    Leung A; Shukla S; Li E; Duann JR; Yaksh T
    Mol Pain; 2014 Mar; 10():18. PubMed ID: 24612493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersession reliability of fMRI activation for heat pain and motor tasks.
    Quiton RL; Keaser ML; Zhuo J; Gullapalli RP; Greenspan JD
    Neuroimage Clin; 2014; 5():309-21. PubMed ID: 25161897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity.
    Kong J; White NS; Kwong KK; Vangel MG; Rosman IS; Gracely RH; Gollub RL
    Hum Brain Mapp; 2006 Sep; 27(9):715-21. PubMed ID: 16342273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in cortical coding of heat evoked pain beyond the perceived intensity: an fMRI and EEG study.
    Haefeli J; Freund P; Kramer JL; Blum J; Luechinger R; Curt A
    Hum Brain Mapp; 2014 Apr; 35(4):1379-89. PubMed ID: 23450833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporo-spatial analysis of cortical activation by phasic innocuous and noxious cold stimuli--a magnetoencephalographic study.
    Maihöfner C; Kaltenhäuser M; Neundörfer B; Lang E
    Pain; 2002 Dec; 100(3):281-290. PubMed ID: 12467999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.