These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22539997)
1. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.). Stoeckli S; Hirschi M; Spirig C; Calanca P; Rotach MW; Samietz J PLoS One; 2012; 7(4):e35723. PubMed ID: 22539997 [TBL] [Abstract][Full Text] [Related]
2. Projecting the Global Potential Distribution of Cydia pomonella (Lepidoptera: Tortricidae) Under Historical and RCP4.5 Climate Scenarios. Guo S; Ge X; Zou Y; Zhou Y; Wang T; Zong S J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33844017 [TBL] [Abstract][Full Text] [Related]
3. Climate change impact on development rates of the codling moth (Cydia pomonella L.) in the Wielkopolska region, Poland. Juszczak R; Kuchar L; Leśny J; Olejnik J Int J Biometeorol; 2013 Jan; 57(1):31-44. PubMed ID: 22374453 [TBL] [Abstract][Full Text] [Related]
4. Climatic warming increases voltinism in European butterflies and moths. Altermatt F Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988 [TBL] [Abstract][Full Text] [Related]
5. Predicting codling moth (Cydia pomonella) phenology in North Carolina on the basis of temperature and improved generation turnover estimates. Chappell TM; Kennedy GG; Walgenbach JF Pest Manag Sci; 2015 Oct; 71(10):1425-32. PubMed ID: 25463597 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. Kumar S; Neven LG; Zhu H; Zhang R J Econ Entomol; 2015 Aug; 108(4):1708-19. PubMed ID: 26470312 [TBL] [Abstract][Full Text] [Related]
7. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change. Cassidy VA; Asaro C; McCarty EP J Econ Entomol; 2022 Oct; 115(5):1331-1341. PubMed ID: 35552738 [TBL] [Abstract][Full Text] [Related]
8. Impact of climate change on the reproductive diapause and voltinism of the carrot weevil, Listronotus oregonensis. Gagnon AÈ; Bourgeois G J Insect Physiol; 2024 Jun; 155():104653. PubMed ID: 38763361 [TBL] [Abstract][Full Text] [Related]
9. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390 [TBL] [Abstract][Full Text] [Related]
10. Modelling the interactions between phenology and insecticide resistance genes in the codling moth Cydia pomonella. Boivin T; Chadoeuf J; Bouvier JC; Beslay D; Sauphanor B Pest Manag Sci; 2005 Jan; 61(1):53-67. PubMed ID: 15593074 [TBL] [Abstract][Full Text] [Related]
11. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Thaler R; Brandstätter A; Meraner A; Chabicovski M; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):838-49. PubMed ID: 18619861 [TBL] [Abstract][Full Text] [Related]
12. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 through 2013. Maurer JA; Shepard JH; Crabo LG; Hammond PC; Zack RS; Peterson MA PLoS One; 2018; 13(9):e0202850. PubMed ID: 30208046 [TBL] [Abstract][Full Text] [Related]
13. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. Khani A; Moharramipour S J Insect Sci; 2010; 10():83. PubMed ID: 20673068 [TBL] [Abstract][Full Text] [Related]
14. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change. Huang J; Hao H Int J Biometeorol; 2018 Aug; 62(8):1507-1520. PubMed ID: 29752540 [TBL] [Abstract][Full Text] [Related]
15. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). Rozsypal J; Koštál V; Zahradníčková H; Šimek P PLoS One; 2013; 8(4):e61745. PubMed ID: 23613923 [TBL] [Abstract][Full Text] [Related]
16. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. Rozsypal J; Koštál V; Berková P; Zahradníčková H; Simek P J Therm Biol; 2014 Oct; 45():124-33. PubMed ID: 25436961 [TBL] [Abstract][Full Text] [Related]
17. The consequences of photoperiodism for organisms in new climates. Grevstad FS; Coop LB Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260 [TBL] [Abstract][Full Text] [Related]
19. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number. Levy RC; Kozak GM; Wadsworth CB; Coates BS; Dopman EB J Evol Biol; 2015 Jan; 28(1):40-53. PubMed ID: 25430782 [TBL] [Abstract][Full Text] [Related]
20. Fate of codling moth (Lepidoptera: Tortricidae) in harvested apples held under short photoperiod. Neven LG J Econ Entomol; 2012 Apr; 105(2):297-303. PubMed ID: 22606796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]