These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22539997)
21. Projecting insect voltinism under high and low greenhouse gas emission conditions. Chen S; Fleischer SJ; Tobin PC; Saunders MC Environ Entomol; 2011 Jun; 40(3):505-15. PubMed ID: 22251628 [TBL] [Abstract][Full Text] [Related]
22. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. Buckley LB; Graham SI; Nufio CR J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307 [TBL] [Abstract][Full Text] [Related]
23. Effects of short photoperiod on codling moth diapause and survival. Neven LG J Econ Entomol; 2013 Feb; 106(1):520-3. PubMed ID: 23448069 [TBL] [Abstract][Full Text] [Related]
24. Predicting the emergence of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), on a degree-day scale in North America. Jones VP; Hilton R; Brunner JF; Bentley WJ; Alston DG; Barrett B; Van Steenwyk RA; Hull LA; Walgenbach JF; Coates WW; Smith TJ Pest Manag Sci; 2013 Dec; 69(12):1393-8. PubMed ID: 23424021 [TBL] [Abstract][Full Text] [Related]
26. Climate change impacts on insect pests for high value specialty crops in California. Jha PK; Zhang N; Rijal JP; Parker LE; Ostoja S; Pathak TB Sci Total Environ; 2024 Jan; 906():167605. PubMed ID: 37802357 [TBL] [Abstract][Full Text] [Related]
27. Warming Accelerates Carbohydrate Consumption in the Diapausing Overwintering Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae). Zhang B; Zhao F; Hoffmann A; Ma G; Ding HM; Ma CS Environ Entomol; 2016 Oct; 45(5):1287-1293. PubMed ID: 27426722 [TBL] [Abstract][Full Text] [Related]
28. Adaptation to the new land or effect of global warming? An age-structured model for rapid voltinism change in an alien lepidopteran pest. Yamanaka T; Tatsuki S; Shimada M J Anim Ecol; 2008 May; 77(3):585-96. PubMed ID: 18266693 [TBL] [Abstract][Full Text] [Related]
29. Selection of models to describe the temperature-dependent development of Santos HTD; Marchioro CA Bull Entomol Res; 2021 Aug; 111(4):476-484. PubMed ID: 33814025 [TBL] [Abstract][Full Text] [Related]
31. Insect overwintering in a changing climate. Bale JS; Hayward SA J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123 [TBL] [Abstract][Full Text] [Related]
32. Degree day-based model predicts pink bollworm phenology across geographical locations of subtropics and semi-arid tropics of India. Fand BB; Nagrare VS; Bal SK; Naik VCB; Naikwadi BV; Mahule DJ; Gokte-Narkhedkar N; Waghmare VN Sci Rep; 2021 Jan; 11(1):436. PubMed ID: 33432040 [TBL] [Abstract][Full Text] [Related]
33. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Khadioli N; Tonnang ZE; Muchugu E; Ong'amo G; Achia T; Kipchirchir I; Kroschel J; Le Ru B Bull Entomol Res; 2014 Dec; 104(6):809-22. PubMed ID: 25229840 [TBL] [Abstract][Full Text] [Related]
34. Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Lindestad O; Wheat CW; Nylin S; Gotthard K Ecology; 2019 Jan; 100(1):e02550. PubMed ID: 30375642 [TBL] [Abstract][Full Text] [Related]
35. Climate drivers of adult insect activity are conditioned by life history traits. Belitz MW; Barve V; Doby JR; Hantak MM; Larsen EA; Li D; Oswald JA; Sewnath N; Walters M; Barve N; Earl K; Gardner N; Guralnick RP; Stucky BJ Ecol Lett; 2021 Dec; 24(12):2687-2699. PubMed ID: 34636143 [TBL] [Abstract][Full Text] [Related]
36. Complex responses of insect phenology to climate change. Forrest JR Curr Opin Insect Sci; 2016 Oct; 17():49-54. PubMed ID: 27720073 [TBL] [Abstract][Full Text] [Related]
37. Pheromone trap and population model-based control of the codling moth, Cydia pomonella L., in Romanian apple culture. Iordanescu O; Micu R; Angelache I; Blidaru A; Snejana D; Simeria G; Draganescu E; Beyers T; Verberne A; Aerts R Commun Agric Appl Biol Sci; 2007; 72(3):603-9. PubMed ID: 18399493 [TBL] [Abstract][Full Text] [Related]
38. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Meraner A; Brandstätter A; Thaler R; Aray B; Unterlechner M; Niederstätter H; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):825-37. PubMed ID: 18620870 [TBL] [Abstract][Full Text] [Related]
39. Overwintering of codling moth (Lepidoptera: Tortricidae) larvae in apple harvest bins and subsequent moth emergence. Higbee BS; Calkins CO; Temple CA J Econ Entomol; 2001 Dec; 94(6):1511-7. PubMed ID: 11777057 [TBL] [Abstract][Full Text] [Related]
40. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Davies WJ Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]