These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22540276)

  • 1. Direct simulation of magnetic resonance relaxation rates and line shapes from molecular trajectories.
    Rangel DP; Baveye PC; Robinson BH
    J Phys Chem B; 2012 Jun; 116(22):6233-49. PubMed ID: 22540276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times.
    Vold RL; Hoatson GL
    J Magn Reson; 2009 May; 198(1):57-72. PubMed ID: 19201232
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Korenchan DE; Lu J; Sabba M; Dagys L; Brown LJ; Levitt MH; Jerschow A
    Phys Chem Chem Phys; 2022 Oct; 24(39):24238-24245. PubMed ID: 36168981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory for spin-lattice relaxation of spin probes on weakly deformable DNA.
    Smith AL; Cekan P; Rangel DP; Sigurdsson ST; Mailer C; Robinson BH
    J Phys Chem B; 2008 Jul; 112(30):9219-36. PubMed ID: 18593148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-resonance rotating-frame spin-lattice relaxation of quadrupolar (spin-1) nuclei.
    Rydzewski JM; Schleich T
    J Magn Reson B; 1994 Oct; 105(2):129-36. PubMed ID: 7952929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.
    Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH
    J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.
    Kurauskas V; Weber E; Hessel A; Ayala I; Marion D; Schanda P
    J Phys Chem B; 2016 Sep; 120(34):8905-13. PubMed ID: 27500976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Prediction of Protein NMR Spin Relaxation by Means of Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion.
    Marcellini M; Nguyen MH; Martin M; Hologne M; Walker O
    J Phys Chem B; 2020 Jun; 124(25):5103-5112. PubMed ID: 32501695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics.
    Klauda JB; Roberts MF; Redfield AG; Brooks BR; Pastor RW
    Biophys J; 2008 Apr; 94(8):3074-83. PubMed ID: 18192349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR studies of the Mo-enzyme aldehyde oxidoreductase from Desulfovibrio gigas: an application of the Bloch-Wangsness-Redfield theory to a system containing weakly-coupled paramagnetic redox centers with different relaxation rates.
    González PJ; Barrera GI; Rizzi AC; Moura JJ; Passeggi MC; Brondino CD
    J Inorg Biochem; 2009 Oct; 103(10):1342-6. PubMed ID: 19628281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.
    Franck JM; Han S
    Methods Enzymol; 2019; 615():131-175. PubMed ID: 30638529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved estimation of CSA-dipolar coupling cross-correlation rates from laboratory-frame relaxation experiments.
    Ghose R; Prestegard JH
    J Magn Reson; 1998 Oct; 134(2):308-14. PubMed ID: 9867423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin dynamics simulation of electron spin relaxation in Ni²⁺(aq).
    Rantaharju J; Mareš J; Vaara J
    J Chem Phys; 2014 Jul; 141(1):014109. PubMed ID: 25005279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation-allowed nuclear magnetic resonance transitions by interference between the quadrupolar coupling and the paramagnetic interaction.
    Ling W; Jerschow A
    J Chem Phys; 2007 Feb; 126(6):064502. PubMed ID: 17313224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of paramagnetic cations on the nonexponential spin-lattice relaxation of rare spin nuclei in solids.
    Alaimo MH; Roberts JE
    Solid State Nucl Magn Reson; 1997 Aug; 8(4):241-50. PubMed ID: 9373904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
    Marsh D
    J Magn Reson; 2016 Nov; 272():166-171. PubMed ID: 27712989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using molecular dynamics trajectories to predict nuclear spin relaxation behaviour in large spin systems.
    Kuprov I; Morris LC; Glushka JN; Prestegard JH
    J Magn Reson; 2021 Feb; 323():106891. PubMed ID: 33445107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of
    Miyanishi K; Mizukami W; Motoyama M; Ichijo N; Kagawa A; Negoro M; Kitagawa M
    J Phys Chem B; 2022 May; 126(19):3530-3538. PubMed ID: 35538043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.