BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22540292)

  • 1. Stress adaptation of Saccharomyces cerevisiae as monitored via metabolites using two-dimensional NMR spectroscopy.
    Kang WY; Kim SH; Chae YK
    FEMS Yeast Res; 2012 Aug; 12(5):608-16. PubMed ID: 22540292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosage Effects of Salt and pH Stresses on
    Chae YK; Kim SH; Ellinger JE; Markley JL
    Bull Korean Chem Soc; 2013 Dec; 34(12):3602-3608. PubMed ID: 25642011
    [No Abstract]   [Full Text] [Related]  

  • 3. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex coordination of multi-scale cellular responses to environmental stress.
    Fonseca LL; Sánchez C; Santos H; Voit EO
    Mol Biosyst; 2011 Mar; 7(3):731-41. PubMed ID: 21088798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolite fingerprinting and profiling in plants using NMR.
    Krishnan P; Kruger NJ; Ratcliffe RG
    J Exp Bot; 2005 Jan; 56(410):255-65. PubMed ID: 15520026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems approach demonstrating sphingolipid-dependent transcription in stress responses.
    Wilder AJ; Cowart LA
    Methods Mol Biol; 2008; 477():369-81. PubMed ID: 19082961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae Hsp30 is necessary for homeostasis of a set of thermal stress response functions.
    Thakur S
    J Microbiol Biotechnol; 2010 Feb; 20(2):403-9. PubMed ID: 20208448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS).
    Chan EC; Koh PK; Mal M; Cheah PY; Eu KW; Backshall A; Cavill R; Nicholson JK; Keun HC
    J Proteome Res; 2009 Jan; 8(1):352-61. PubMed ID: 19063642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy.
    Palomino-Schätzlein M; Molina-Navarro MM; Tormos-Pérez M; Rodríguez-Navarro S; Pineda-Lucena A
    Anal Bioanal Chem; 2013 Oct; 405(26):8431-41. PubMed ID: 23942588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic properties of statistical total correlation spectroscopy based information recovery in 1H NMR metabolic data sets.
    Alves AC; Rantalainen M; Holmes E; Nicholson JK; Ebbels TM
    Anal Chem; 2009 Mar; 81(6):2075-84. PubMed ID: 19220030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses.
    Li L; Ye Y; Pan L; Zhu Y; Zheng S; Lin Y
    Biochem Biophys Res Commun; 2009 Oct; 387(4):778-83. PubMed ID: 19635452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E; Gomar-Alba M; Palacios A; Ortiz-Julien A; del Olmo ML
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1551-61. PubMed ID: 20941492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive changes of the yeast mitochondrial proteome in response to salt stress.
    Martínez-Pastor M; Proft M; Pascual-Ahuir A
    OMICS; 2010 Oct; 14(5):541-52. PubMed ID: 20955007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in Saccharomyces cerevisiae.
    Hammerl R; Frank O; Hofmann T
    J Agric Food Chem; 2017 Apr; 65(15):3230-3241. PubMed ID: 28381091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR-based metabonomics reveals relationship between pre-slaughter exercise stress, the plasma metabolite profile at time of slaughter, and water-holding capacity in pigs.
    Bertram HC; Oksbjerg N; Young JF
    Meat Sci; 2010 Jan; 84(1):108-13. PubMed ID: 20374761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.