These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
779 related articles for article (PubMed ID: 22540421)
41. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. Guo S; Ye S; Liu Y; Wei L; Xue J; Wu H; Song F; Zhang J; Wu X; Huang D; Rao Z J Struct Biol; 2009 Nov; 168(2):259-66. PubMed ID: 19591941 [TBL] [Abstract][Full Text] [Related]
42. The Cytocidal Spectrum of Mendoza-Almanza G; Esparza-Ibarra EL; Ayala-Luján JL; Mercado-Reyes M; Godina-González S; Hernández-Barrales M; Olmos-Soto J Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32384723 [No Abstract] [Full Text] [Related]
43. Bacillus thuringiensis: from biodiversity to biotechnology. Prieto-Samsónov DL; Vázquez-Padrón RI; Ayra-Pardo C; González-Cabrera J; de la Riva GA J Ind Microbiol Biotechnol; 1997 Sep; 19(3):202-19. PubMed ID: 9418060 [TBL] [Abstract][Full Text] [Related]
44. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133 [TBL] [Abstract][Full Text] [Related]
45. Cotton bollworm resistance to Bt transgenic cotton: a case analysis. Liu C; Li Y; Gao Y; Ning C; Wu K Sci China Life Sci; 2010 Aug; 53(8):934-41. PubMed ID: 20821292 [TBL] [Abstract][Full Text] [Related]
46. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Sayyed AH; Moores G; Crickmore N; Wright DJ Pest Manag Sci; 2008 Aug; 64(8):813-9. PubMed ID: 18383197 [TBL] [Abstract][Full Text] [Related]
47. Binding affinity and larvicidal activity of a novel vegetative insecticidal protein Vip3V. Doss VA Trop Biomed; 2009 Dec; 26(3):334-40. PubMed ID: 20237448 [TBL] [Abstract][Full Text] [Related]
48. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
49. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715 [TBL] [Abstract][Full Text] [Related]
50. Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects. Wang S; Kain W; Wang P Insect Biochem Mol Biol; 2018 Nov; 102():59-66. PubMed ID: 30278206 [TBL] [Abstract][Full Text] [Related]
51. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363 [TBL] [Abstract][Full Text] [Related]
52. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
53. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Soberón M; Gill SS; Bravo A Cell Mol Life Sci; 2009 Apr; 66(8):1337-49. PubMed ID: 19132293 [TBL] [Abstract][Full Text] [Related]
54. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. López-Diaz JA; Cantón PE; Gill SS; Soberón M; Bravo A Environ Microbiol; 2013 Nov; 15(11):3030-9. PubMed ID: 24112611 [TBL] [Abstract][Full Text] [Related]
55. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Jouzani GS; Valijanian E; Sharafi R Appl Microbiol Biotechnol; 2017 Apr; 101(7):2691-2711. PubMed ID: 28235989 [TBL] [Abstract][Full Text] [Related]
56. Group Selection as a Basis for Screening Mutagenized Libraries of Public Goods (Bacillus thuringiensis Cry Toxins). Morwool P; Dimitriu T; Crickmore N; Raymond B Appl Environ Microbiol; 2023 Jul; 89(7):e0051223. PubMed ID: 37358425 [TBL] [Abstract][Full Text] [Related]
57. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
58. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Xiao Y; Wu K Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180316. PubMed ID: 30967027 [TBL] [Abstract][Full Text] [Related]
59. Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis? Peralta C; Palma L Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28106770 [TBL] [Abstract][Full Text] [Related]
60. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. Tanaka S; Endo H; Adegawa S; Kikuta S; Sato R FEBS J; 2016 Dec; 283(24):4474-4490. PubMed ID: 27813251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]