These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22540472)

  • 21. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
    Carmele A; Kabuss J; Schulze F; Reitzenstein S; Knorr A
    Phys Rev Lett; 2013 Jan; 110(1):013601. PubMed ID: 23383788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime.
    Li J; Yu R; Ding C; Wu Y
    Opt Express; 2014 Jun; 22(12):15024-38. PubMed ID: 24977596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced photonic crystal cavity-waveguide coupling using local slow-light engineering.
    Mnaymneh K; Frédérick S; Dalacu D; Lapointe J; Poole PJ; Williams RL
    Opt Lett; 2012 Jan; 37(2):280-2. PubMed ID: 22854493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum dot spectroscopy using cavity quantum electrodynamics.
    Winger M; Badolato A; Hennessy KJ; Hu EL; Imamoğlu A
    Phys Rev Lett; 2008 Nov; 101(22):226808. PubMed ID: 19113509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deterministic coupling of single quantum dots to single nanocavity modes.
    Badolato A; Hennessy K; Atatüre M; Dreiser J; Hu E; Petroff PM; Imamoglu A
    Science; 2005 May; 308(5725):1158-61. PubMed ID: 15905398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.
    Yalla R; Sadgrove M; Nayak KP; Hakuta K
    Phys Rev Lett; 2014 Oct; 113(14):143601. PubMed ID: 25325641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade.
    Müller K; Rundquist A; Fischer KA; Sarmiento T; Lagoudakis KG; Kelaita YA; Sánchez Muñoz C; del Valle E; Laussy FP; Vučković J
    Phys Rev Lett; 2015 Jun; 114(23):233601. PubMed ID: 26196801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide.
    Lund-Hansen T; Stobbe S; Julsgaard B; Thyrrestrup H; Sünner T; Kamp M; Forchel A; Lodahl P
    Phys Rev Lett; 2008 Sep; 101(11):113903. PubMed ID: 18851282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Waveguide-coupled photonic crystal cavity for quantum dot spin readout.
    Coles RJ; Prtljaga N; Royall B; Luxmoore IJ; Fox AM; Skolnick MS
    Opt Express; 2014 Feb; 22(3):2376-85. PubMed ID: 24663529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of the indistinguishability of single photon emitters coupled to photonic waveguides.
    Guimbao J; Weituschat LM; Llorens Montolio JM; Postigo PA
    Opt Express; 2021 Jul; 29(14):21160-21173. PubMed ID: 34265908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
    Khankhoje UK; Kim SH; Richards BC; Hendrickson J; Sweet J; Olitzky JD; Khitrova G; Gibbs HM; Scherer A
    Nanotechnology; 2010 Feb; 21(6):065202. PubMed ID: 20057040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.
    Li JJ; Zhu KD
    Nanotechnology; 2011 Feb; 22(5):055202. PubMed ID: 21178232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip.
    Zeng C; Ma Y; Zhang Y; Li D; Huang Z; Wang Y; Huang Q; Li J; Zhong Z; Yu J; Jiang Z; Xia J
    Opt Express; 2015 Aug; 23(17):22250-61. PubMed ID: 26368197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple but accurate estimation of light-matter coupling strength and optical loss for a molecular emitter coupled with photonic modes.
    Wang S; Chuang YT; Hsu LY
    J Chem Phys; 2021 Oct; 155(13):134117. PubMed ID: 34624977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.
    Hughes S; Yao P
    Opt Express; 2009 Mar; 17(5):3322-30. PubMed ID: 19259169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards registered single quantum dot photonic devices.
    Lee KH; Brossard FS; Hadjipanayi M; Xu X; Waldermann F; Green AM; Sharp DN; Turberfield AJ; Williams DA; Taylor RA
    Nanotechnology; 2008 Nov; 19(45):455307. PubMed ID: 21832772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities.
    Lin H; Chen JH; Chao SS; Lo MC; Lin SD; Chang WH
    Opt Express; 2010 Nov; 18(23):23948-56. PubMed ID: 21164741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.