These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22540509)

  • 1. Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy.
    Duque JG; Telg H; Chen H; Swan AK; Shreve AP; Tu X; Zheng M; Doorn SK
    Phys Rev Lett; 2012 Mar; 108(11):117404. PubMed ID: 22540509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher energy optical transitions in semiconducting carbon nanotubes.
    Jia Y; Yu G; Dong J
    Nanotechnology; 2009 Apr; 20(15):155708. PubMed ID: 19420560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Violation of the condon approximation in semiconducting carbon nanotubes.
    Duque JG; Chen H; Swan AK; Shreve AP; Kilina S; Tretiak S; Tu X; Zheng M; Doorn SK
    ACS Nano; 2011 Jun; 5(6):5233-41. PubMed ID: 21612303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of exciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtone analysis.
    Shreve AP; Haroz EH; Bachilo SM; Weisman RB; Tretiak S; Kilina S; Doorn SK
    Phys Rev Lett; 2007 Jan; 98(3):037405. PubMed ID: 17358727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman excitation profiles of metallic single-walled carbon nanotubes.
    Nikolić B
    J Phys Condens Matter; 2010 Mar; 22(9):095302. PubMed ID: 21389412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hydrogen bonding on excitonic coupling and hierarchal structure of a light-harvesting porphyrin aggregate.
    Rich CC; McHale JL
    Phys Chem Chem Phys; 2012 Feb; 14(7):2362-74. PubMed ID: 22241160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles.
    Simpson JR; Roslyak O; Duque JG; Hároz EH; Crochet JJ; Telg H; Piryatinski A; Walker ARH; Doorn SK
    Nat Commun; 2018 Feb; 9(1):637. PubMed ID: 29434198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance hyper-Raman spectra of zinc phthalocyanine.
    Leng W; Myers Kelley A
    J Phys Chem A; 2008 Jul; 112(26):5925-9. PubMed ID: 18537230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Tunable Many-Body Exciton-Phonon Quantum Interference.
    Chang SJ; Huang PC; Su JS; Hsieh YW; Quiroz Reyes CJ; Fan TH; Sun HS; Nguyem AP; Liu TI; Cheng HW; Lin CW; Hayashi M; Yong CK
    Adv Sci (Weinh); 2024 Oct; 11(40):e2404741. PubMed ID: 39206874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third and fourth optical transitions in semiconducting carbon nanotubes.
    Araujo PT; Doorn SK; Kilina S; Tretiak S; Einarsson E; Maruyama S; Chacham H; Pimenta MA; Jorio A
    Phys Rev Lett; 2007 Feb; 98(6):067401. PubMed ID: 17358983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphonon Raman scattering from individual single-walled carbon nanotubes.
    Wang F; Liu W; Wu Y; Sfeir MY; Huang L; Hone J; O'Brien S; Brus LE; Heinz TF; Shen YR
    Phys Rev Lett; 2007 Jan; 98(4):047402. PubMed ID: 17358810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy.
    del Corro E; Terrones H; Elias A; Fantini C; Feng S; Nguyen MA; Mallouk TE; Terrones M; Pimenta MA
    ACS Nano; 2014 Sep; 8(9):9629-35. PubMed ID: 25162682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering.
    Carvalho BR; Malard LM; Alves JM; Fantini C; Pimenta MA
    Phys Rev Lett; 2015 Apr; 114(13):136403. PubMed ID: 25884130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes.
    Fouquet M; Telg H; Maultzsch J; Wu Y; Chandra B; Hone J; Heinz TF; Thomsen C
    Phys Rev Lett; 2009 Feb; 102(7):075501. PubMed ID: 19257684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.