These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22540865)

  • 1. Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation.
    Keen OS; Baik S; Linden KG; Aga DS; Love NG
    Environ Sci Technol; 2012 Jun; 46(11):6222-7. PubMed ID: 22540865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Water Sci Technol; 2004; 50(5):329-34. PubMed ID: 15497865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of UV/H(2)O(2) treatment for the oxidation of pharmaceuticals in wastewater.
    Rosario-Ortiz FL; Wert EC; Snyder SA
    Water Res; 2010 Mar; 44(5):1440-8. PubMed ID: 19931113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of persistent organic compounds by integrated advanced oxidation processes and sequential batch reactor.
    Christensen A; Gurol MD; Garoma T
    Water Res; 2009 Sep; 43(16):3910-21. PubMed ID: 19427015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine.
    Vogna D; Marotta R; Andreozzi R; Napolitano A; d'Ischia M
    Chemosphere; 2004 Jan; 54(4):497-505. PubMed ID: 14581052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation.
    Gebhardt W; Schröder HF
    J Chromatogr A; 2007 Aug; 1160(1-2):34-43. PubMed ID: 17582426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of the antiepileptic drug oxcarbazepine upon different water disinfection processes.
    Li Z; Fenet H; Gomez E; Chiron S
    Water Res; 2011 Feb; 45(4):1587-96. PubMed ID: 21186041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.
    Siedlecka EM; Stepnowski P
    Water Environ Res; 2006 Aug; 78(8):852-6. PubMed ID: 17059139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment--indications from column experiments.
    Hübner U; Seiwert B; Reemtsma T; Jekel M
    Water Res; 2014 Feb; 49():34-43. PubMed ID: 24316180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Chemosphere; 2004 Aug; 56(5):411-23. PubMed ID: 15212906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pre-ozonation on the H2O2/UV-C treatment of raw and biologically pre-treated textile industry wastewater.
    Alaton IA; Balcioğlu IA
    Water Sci Technol; 2002; 45(12):297-304. PubMed ID: 12201115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.
    Mohapatra DP; Brar SK; Tyagi RD; Picard P; Surampalli RY
    Sci Total Environ; 2014 Feb; 470-471():58-75. PubMed ID: 24140682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation.
    Chen B; Song J; Yang L; Bai Q; Li R; Zhang Y; Rittmann BE
    Biodegradation; 2015 Nov; 26(6):431-41. PubMed ID: 26342301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destruction of organic pollutants in reusable wastewater using advanced oxidation technology.
    Yang C; Xu YR; Teo KC; Goh NK; Chia LS; Xie RJ
    Chemosphere; 2005 Apr; 59(3):441-5. PubMed ID: 15763097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ionic liquid breakdown products in an advanced oxidation system.
    Czerwicka M; Stolte S; Müller A; Siedlecka EM; Gołebiowski M; Kumirska J; Stepnowski P
    J Hazard Mater; 2009 Nov; 171(1-3):478-83. PubMed ID: 19604628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation.
    Naddeo V; Meriç S; Kassinos D; Belgiorno V; Guida M
    Water Res; 2009 Sep; 43(16):4019-27. PubMed ID: 19589554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of endocrine disrupting compounds from wastewater treatment plant effluents by means of advanced oxidation.
    Bertanza G; Pedrazzani R; Zambarda V; Grande MD; Icarelli F; Baldassarre L
    Water Sci Technol; 2010; 61(7):1663-71. PubMed ID: 20371923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Chemosphere; 2005 Jul; 60(5):644-55. PubMed ID: 15963803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment.
    Sirtori C; Zapata A; Oller I; Gernjak W; Agüera A; Malato S
    Water Res; 2009 Feb; 43(3):661-8. PubMed ID: 19046757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of diglyme containing wastewater by advanced oxidation--process design and optimisation.
    Grossmann D; Köser H; Kretschmer R; Porobin M
    Water Sci Technol; 2001; 44(5):287-93. PubMed ID: 11695472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.