These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22540941)

  • 1. Microfluidic models of vascular functions.
    Wong KH; Chan JM; Kamm RD; Tien J
    Annu Rev Biomed Eng; 2012; 14():205-30. PubMed ID: 22540941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in microfluidic cell culture systems for studying angiogenesis.
    Young EW
    J Lab Autom; 2013 Dec; 18(6):427-36. PubMed ID: 23832929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironment design considerations for cellular scale studies.
    Walker GM; Zeringue HC; Beebe DJ
    Lab Chip; 2004 Apr; 4(2):91-7. PubMed ID: 15052346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic approaches to the study of angiogenesis and the microcirculation.
    Akbari E; Spychalski GB; Song JW
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28182312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Shear stress and vascular formation].
    Ando J
    Nihon Yakurigaku Zasshi; 1996 Mar; 107(3):141-52. PubMed ID: 8728287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intussusceptive angiogenesis: pillars against the blood flow.
    Styp-Rekowska B; Hlushchuk R; Pries AR; Djonov V
    Acta Physiol (Oxf); 2011 Jul; 202(3):213-23. PubMed ID: 21535415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for flow cytometric analysis of cells and particles.
    Huh D; Gu W; Kamotani Y; Grotberg JB; Takayama S
    Physiol Meas; 2005 Jun; 26(3):R73-98. PubMed ID: 15798290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular-scale hydrodynamics.
    Abkarian M; Faivre M; Horton R; Smistrup K; Best-Popescu CA; Stone HA
    Biomed Mater; 2008 Sep; 3(3):034011. PubMed ID: 18765900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical factors as triggers of vascular growth.
    Hoefer IE; den Adel B; Daemen MJ
    Cardiovasc Res; 2013 Jul; 99(2):276-83. PubMed ID: 23580605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues.
    Engelmayr GC; Sales VL; Mayer JE; Sacks MS
    Biomaterials; 2006 Dec; 27(36):6083-95. PubMed ID: 16930686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic culture models of tumor angiogenesis.
    Stroock AD; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2143-6. PubMed ID: 20214470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress modulates the expression of thrombospondin-1 and CD36 in endothelial cells in vitro and during shear stress-induced angiogenesis in vivo.
    Bongrazio M; Da Silva-Azevedo L; Bergmann EC; Baum O; Hinz B; Pries AR; Zakrzewicz A
    Int J Immunopathol Pharmacol; 2006; 19(1):35-48. PubMed ID: 16569344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological factors influencing capillary growth.
    Egginton S
    Acta Physiol (Oxf); 2011 Jul; 202(3):225-39. PubMed ID: 20946238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4151-7. PubMed ID: 26552886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.