BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 22541026)

  • 61. Social cues, mentalizing and the neural processing of speech accompanied by gestures.
    Straube B; Green A; Jansen A; Chatterjee A; Kircher T
    Neuropsychologia; 2010 Jan; 48(2):382-93. PubMed ID: 19782696
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The timing and precision of action prediction in the aging brain.
    Diersch N; Jones AL; Cross ES
    Hum Brain Mapp; 2016 Jan; 37(1):54-66. PubMed ID: 26503586
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Predicting domain-specific actions in expert table tennis players activates the semantic brain network.
    Wang Y; Lu Y; Deng Y; Gu N; Parviainen T; Zhou C
    Neuroimage; 2019 Oct; 200():482-489. PubMed ID: 31284027
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Object presence modulates activity within the somatosensory component of the action observation network.
    Turella L; Tubaldi F; Erb M; Grodd W; Castiello U
    Cereb Cortex; 2012 Mar; 22(3):668-79. PubMed ID: 21690260
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can we simulate an action that we temporarily cannot perform?
    Calmels C; Pichon S; Grèzes J
    Neurophysiol Clin; 2014 Nov; 44(5):433-45. PubMed ID: 25438976
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Activity in the action observation network enhances emotion regulation during observation of risk-taking: an fMRI study.
    Tamura M; Moriguchi Y; Higuchi S; Hida A; Enomoto M; Umezawa J; Mishima K
    Neurol Res; 2013 Jan; 35(1):22-8. PubMed ID: 23317795
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lateral occipitotemporal cortex and action representation.
    Romaiguère P; Nazarian B; Roth M; Anton JL; Felician O
    Neuropsychologia; 2014 Apr; 56():167-77. PubMed ID: 24467888
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasticity of human handedness: decreased one-hand bias and inter-manual performance asymmetry in expert basketball players.
    Stöckel T; Weigelt M
    J Sports Sci; 2012; 30(10):1037-45. PubMed ID: 22574753
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expertise-Level-Dependent Functionally Plastic Changes During Motor Imagery in Basketball Players.
    Zhang LL; Pi YL; Shen C; Zhu H; Li XP; Ni Z; Zhang J; Wu Y
    Neuroscience; 2018 Jun; 380():78-89. PubMed ID: 29634999
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The fraction of an action is more than a movement: neural signatures of event segmentation in fMRI.
    Schubotz RI; Korb FM; Schiffer AM; Stadler W; von Cramon DY
    Neuroimage; 2012 Jul; 61(4):1195-205. PubMed ID: 22521252
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Physiological interference in effective connectivity of action network.
    Huang JM; Cheng CM; Chou CC; Chen YC; Hsu PY; Yeh TC
    Neuroreport; 2013 Jan; 24(1):1-5. PubMed ID: 23165080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.
    Ondobaka S; de Lange FP; Wittmann M; Frith CD; Bekkering H
    Cereb Cortex; 2015 Sep; 25(9):2566-73. PubMed ID: 24663382
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.
    Yang J
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):381-94. PubMed ID: 25450866
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differences in several perceptual abilities between experts and novices in basketball, volleyball and water-polo.
    Kioumourtzoglou E; Kourtessis T; Michalopoulou M; Derri V
    Percept Mot Skills; 1998 Jun; 86(3 Pt 1):899-912. PubMed ID: 9656285
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Differences and commonalities in the judgment of causality in physical and social contexts: an fMRI study.
    Wende KC; Nagels A; Blos J; Stratmann M; Chatterjee A; Kircher T; Straube B
    Neuropsychologia; 2013 Nov; 51(13):2572-80. PubMed ID: 23973351
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hemispheric activation differences in novice and expert clinicians during clinical decision making.
    Hruska P; Hecker KG; Coderre S; McLaughlin K; Cortese F; Doig C; Beran T; Wright B; Krigolson O
    Adv Health Sci Educ Theory Pract; 2016 Dec; 21(5):921-933. PubMed ID: 26530736
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting the fate of basketball throws: an EEG study on expert action prediction in wheelchair basketball players.
    Özkan DG; Pezzetta R; Moreau Q; Abreu AM; Aglioti SM
    Exp Brain Res; 2019 Dec; 237(12):3363-3373. PubMed ID: 31728597
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions.
    Avenanti A; Annella L; Candidi M; Urgesi C; Aglioti SM
    Cereb Cortex; 2013 Mar; 23(3):570-80. PubMed ID: 22426335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.