These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 22541048)
1. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress. Sarkar S; Greenleaf JE; Gupta A; Uy D; Sengupta AK Annu Rev Chem Biomol Eng; 2012; 3():497-517. PubMed ID: 22541048 [TBL] [Abstract][Full Text] [Related]
2. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. Xu P; Capito M; Cath TY J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312 [TBL] [Abstract][Full Text] [Related]
3. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production. Schmidt SA; Gukelberger E; Hermann M; Fiedler F; Großmann B; Hoinkis J; Ghosh A; Chatterjee D; Bundschuh J J Hazard Mater; 2016 Nov; 318():671-678. PubMed ID: 27497227 [TBL] [Abstract][Full Text] [Related]
4. Arsenic removal by iron oxide coated sponge: treatment and waste management. Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451 [TBL] [Abstract][Full Text] [Related]
5. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Mondal P; Bhowmick S; Chatterjee D; Figoli A; Van der Bruggen B Chemosphere; 2013 Jun; 92(2):157-70. PubMed ID: 23466274 [TBL] [Abstract][Full Text] [Related]
6. Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America - a critical analysis. Bundschuh J; Litter M; Ciminelli VS; Morgada ME; Cornejo L; Hoyos SG; Hoinkis J; Alarcón-Herrera MT; Armienta MA; Bhattacharya P Water Res; 2010 Nov; 44(19):5828-45. PubMed ID: 20638705 [TBL] [Abstract][Full Text] [Related]
7. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation--precipitation parameters. Tresintsi S; Simeonidis K; Vourlias G; Stavropoulos G; Mitrakas M Water Res; 2012 Oct; 46(16):5255-67. PubMed ID: 22824674 [TBL] [Abstract][Full Text] [Related]
8. Electro-chemical arsenic remediation: field trials in West Bengal. Amrose SE; Bandaru SR; Delaire C; van Genuchten CM; Dutta A; DebSarkar A; Orr C; Roy J; Das A; Gadgil AJ Sci Total Environ; 2014 Aug; 488-489():539-46. PubMed ID: 24355249 [TBL] [Abstract][Full Text] [Related]
9. Metal attraction: an ironclad solution to arsenic contamination? Frazer L Environ Health Perspect; 2005 Jun; 113(6):A398-401. PubMed ID: 15929882 [TBL] [Abstract][Full Text] [Related]
10. Arsenic remediation from drinking water using Fenton's reagent with slow sand filter. Jasudkar D; Rakhunde R; Deshpande L; Labhasetwar P; Juneja HD Bull Environ Contam Toxicol; 2012 Dec; 89(6):1231-4. PubMed ID: 23052589 [TBL] [Abstract][Full Text] [Related]
11. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Callegari A; Ferronato N; Rada EC; Capodaglio AG; Torretta V Environ Sci Pollut Res Int; 2018 Sep; 25(26):26135-26143. PubMed ID: 29971744 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Sabbatini P; Yrazu F; Rossi F; Thern G; Marajofsky A; Fidalgo de Cortalezzi MM Water Res; 2010 Nov; 44(19):5702-12. PubMed ID: 20599241 [TBL] [Abstract][Full Text] [Related]
13. Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation. Sarkar S; Greenleaf JE; Gupta A; Ghosh D; Blaney LM; Bandyopadhyay P; Biswas RK; Dutta AK; Sengupta AK Water Res; 2010 Nov; 44(19):5813-22. PubMed ID: 20728196 [TBL] [Abstract][Full Text] [Related]
14. Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors. Tobias R; Berg M Environ Sci Technol; 2011 Apr; 45(8):3260-7. PubMed ID: 21443220 [TBL] [Abstract][Full Text] [Related]
15. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Tresintsi S; Simeonidis K; Estradé S; Martinez-Boubeta C; Vourlias G; Pinakidou F; Katsikini M; Paloura EC; Stavropoulos G; Mitrakas M Environ Sci Technol; 2013 Sep; 47(17):9699-705. PubMed ID: 23888913 [TBL] [Abstract][Full Text] [Related]
16. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. Mondal P; Majumder CB; Mohanty B J Hazard Mater; 2006 Sep; 137(1):464-79. PubMed ID: 16616812 [TBL] [Abstract][Full Text] [Related]
17. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Malik AH; Khan ZM; Mahmood Q; Nasreen S; Bhatti ZA J Hazard Mater; 2009 Aug; 168(1):1-12. PubMed ID: 19278777 [TBL] [Abstract][Full Text] [Related]
18. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water. Etmannski TR; Darton RC Sci Total Environ; 2014 Aug; 488-489():505-11. PubMed ID: 24284264 [TBL] [Abstract][Full Text] [Related]
19. Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation. Sarkar S; Gupta A; Biswas RK; Deb AK; Greenleaf JE; Sengupta AK Water Res; 2005 May; 39(10):2196-206. PubMed ID: 15913703 [TBL] [Abstract][Full Text] [Related]
20. Mitigating arsenic crisis in the developing world: role of robust, reusable and selective hybrid anion exchanger (HAIX). German M; Seingheng H; SenGupta AK Sci Total Environ; 2014 Aug; 488-489():547-53. PubMed ID: 24321388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]