These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22541049)

  • 21. Chaotic mixing in microdroplets.
    Grigoriev RO; Schatz MF; Sharma V
    Lab Chip; 2006 Oct; 6(10):1369-72. PubMed ID: 17102851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gravity effects on mixing with magnetic micro-convection in microfluidics.
    Kitenbergs G; Tatuļčenkovs A; Puķina L; Cēbers A
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):138. PubMed ID: 30467643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation.
    Nguyen NT; Huang X
    Biomed Microdevices; 2006 Jun; 8(2):133-9. PubMed ID: 16688572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and theoretical study of selective protein deposition using focused micro laminar flows.
    Bransky A; Korin N; Levenberg S
    Biomed Microdevices; 2008 Jun; 10(3):421-8. PubMed ID: 18213521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification.
    Mao S; Sato C; Suzuki Y; Yang J; Zeng H; Nakajima H; Yang M; Lin JM; Uchiyama K
    Chemphyschem; 2016 Oct; 17(20):3155-3159. PubMed ID: 27505180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perturbation analysis of mixing and dispersion regimes in the low and intermediate Péclet number region.
    Giona M; Cerbelli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046309. PubMed ID: 20481829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaotic mixer for microchannels.
    Stroock AD; Dertinger SK; Ajdari A; Mezic I; Stone HA; Whitesides GM
    Science; 2002 Jan; 295(5555):647-51. PubMed ID: 11809963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersion of overdamped diffusing particles in channel flows coupled to transverse acoustophoretic potentials: transport regimes and scaling anomalies.
    Giona M; Garofalo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032104. PubMed ID: 26465423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemotaxis and autochemotaxis of self-propelling droplet swimmers.
    Jin C; Krüger C; Maass CC
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5089-5094. PubMed ID: 28465433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsteady transport phenomena in free-flow electrophoresis--prerequisite of ultrafast sample cleaning in microfluidic devices.
    Klepárník K; Otevrel M
    Electrophoresis; 2004 Nov; 25(21-22):3633-42. PubMed ID: 15565699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis.
    Günther A; Jensen KF
    Lab Chip; 2006 Dec; 6(12):1487-503. PubMed ID: 17203152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic manipulation with artificial/bioinspired cilia.
    den Toonder JM; Onck PR
    Trends Biotechnol; 2013 Feb; 31(2):85-91. PubMed ID: 23245658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drop mixing in a microchannel for lab-on-a-chip platforms.
    Rhee M; Burns MA
    Langmuir; 2008 Jan; 24(2):590-601. PubMed ID: 18069861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows.
    Das T; Das S; Chakraborty S
    J Chem Phys; 2009 Jun; 130(24):244904. PubMed ID: 19566178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the role of initial velocities in pair dispersion in a microfluidic chaotic flow.
    Afik E; Steinberg V
    Nat Commun; 2017 Sep; 8(1):468. PubMed ID: 28883492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices.
    Marschewski J; Jung S; Ruch P; Prasad N; Mazzotti S; Michel B; Poulikakos D
    Lab Chip; 2015 Apr; 15(8):1923-33. PubMed ID: 25737365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.