BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22541287)

  • 1. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario.
    Bardoni B; Abekhoukh S; Zongaro S; Melko M
    Prog Brain Res; 2012; 197():29-51. PubMed ID: 22541287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of mRNA translation in cultured hippocampal neurons.
    Huang YS; Richter JD
    Methods Enzymol; 2007; 431():143-62. PubMed ID: 17923234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules.
    Kunde SA; Musante L; Grimme A; Fischer U; Müller E; Wanker EE; Kalscheuer VM
    Hum Mol Genet; 2011 Dec; 20(24):4916-31. PubMed ID: 21933836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P.
    Melko M; Bardoni B
    Biochimie; 2010 Aug; 92(8):919-26. PubMed ID: 20570707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-protein interactions and control of mRNA stability in neurons.
    Bolognani F; Perrone-Bizzozero NI
    J Neurosci Res; 2008 Feb; 86(3):481-9. PubMed ID: 17853436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs.
    Wan D; Zhang ZC; Zhang X; Li Q; Han J
    Hum Mol Genet; 2015 Aug; 24(16):4599-614. PubMed ID: 26002102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deregulated mTOR-mediated translation in intellectual disability.
    Troca-Marín JA; Alves-Sampaio A; Montesinos ML
    Prog Neurobiol; 2012 Feb; 96(2):268-82. PubMed ID: 22285767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nuclear microspherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons.
    Davidovic L; Bechara E; Gravel M; Jaglin XH; Tremblay S; Sik A; Bardoni B; Khandjian EW
    Hum Mol Genet; 2006 May; 15(9):1525-38. PubMed ID: 16571602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA trafficking and local translation: the Yin and Yang of regulating mRNA localization in neurons.
    Sinnamon JR; Czaplinski K
    Acta Biochim Biophys Sin (Shanghai); 2011 Sep; 43(9):663-70. PubMed ID: 21749992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability.
    Melko M; Douguet D; Bensaid M; Zongaro S; Verheggen C; Gecz J; Bardoni B
    Hum Mol Genet; 2011 May; 20(10):1873-85. PubMed ID: 21330300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif.
    Schaeffer C; Bardoni B; Mandel JL; Ehresmann B; Ehresmann C; Moine H
    EMBO J; 2001 Sep; 20(17):4803-13. PubMed ID: 11532944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs.
    Xu YH; Grabowski GA
    Mol Genet Metab; 1999 Dec; 68(4):441-54. PubMed ID: 10607473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Puf proteins in mRNA degradation and translation.
    Miller MA; Olivas WM
    Wiley Interdiscip Rev RNA; 2011; 2(4):471-92. PubMed ID: 21957038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the importance of mRNA transport in memory.
    Sánchez-Carbente Mdel R; Desgroseillers L
    Prog Brain Res; 2008; 169():41-58. PubMed ID: 18394467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Messenger-RNA-binding proteins and the messages they carry.
    Dreyfuss G; Kim VN; Kataoka N
    Nat Rev Mol Cell Biol; 2002 Mar; 3(3):195-205. PubMed ID: 11994740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA.
    Scott RE; White-Grindley E; Ruley HE; Chesler EJ; Williams RW
    J Cell Physiol; 2005 Jul; 204(1):99-105. PubMed ID: 15617101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic plasticity and translation initiation.
    Klann E; Antion MD; Banko JL; Hou L
    Learn Mem; 2004; 11(4):365-72. PubMed ID: 15254214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA transport and localized protein synthesis in neurological disorders and neural repair.
    Wang W; van Niekerk E; Willis DE; Twiss JL
    Dev Neurobiol; 2007 Aug; 67(9):1166-82. PubMed ID: 17514714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the lambdaN peptide to tether proteins to RNAs.
    Baron-Benhamou J; Gehring NH; Kulozik AE; Hentze MW
    Methods Mol Biol; 2004; 257():135-54. PubMed ID: 14770003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.