These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 22541487)
1. Effects of feeding a calf starter on molecular adaptations in the ruminal epithelium and liver of Holstein dairy calves. Laarman AH; Ruiz-Sanchez AL; Sugino T; Guan LL; Oba M J Dairy Sci; 2012 May; 95(5):2585-94. PubMed ID: 22541487 [TBL] [Abstract][Full Text] [Related]
2. Short communication: Effect of calf starter on rumen pH of Holstein dairy calves at weaning. Laarman AH; Oba M J Dairy Sci; 2011 Nov; 94(11):5661-4. PubMed ID: 22032389 [TBL] [Abstract][Full Text] [Related]
3. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. Naeem A; Drackley JK; Stamey J; Loor JJ J Dairy Sci; 2012 Apr; 95(4):1807-20. PubMed ID: 22459829 [TBL] [Abstract][Full Text] [Related]
4. Effects of starch content of calf starter on growth and rumen pH in Holstein calves during the weaning transition. Laarman AH; Sugino T; Oba M J Dairy Sci; 2012 Aug; 95(8):4478-87. PubMed ID: 22818462 [TBL] [Abstract][Full Text] [Related]
5. Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves. McCurdy DE; Wilkins KR; Hiltz RL; Moreland S; Klanderman K; Laarman AH J Dairy Sci; 2019 Oct; 102(10):8874-8882. PubMed ID: 31351719 [TBL] [Abstract][Full Text] [Related]
6. Effects of weaning and ionophore supplementation on selected blood metabolites and growth in dairy calves. Klotz JL; Heitmann RN J Dairy Sci; 2006 Sep; 89(9):3587-98. PubMed ID: 16899694 [TBL] [Abstract][Full Text] [Related]
7. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. Khan MA; Lee HJ; Lee WS; Kim HS; Kim SB; Park SB; Baek KS; Ha JK; Choi YJ J Dairy Sci; 2008 Mar; 91(3):1140-9. PubMed ID: 18292270 [TBL] [Abstract][Full Text] [Related]
8. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. Lesmeister KE; Heinrichs AJ J Dairy Sci; 2004 Oct; 87(10):3439-50. PubMed ID: 15377622 [TBL] [Abstract][Full Text] [Related]
9. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed Holstein calves. Kristensen NB; Sehested J; Jensen SK; Vestergaard M J Dairy Sci; 2007 Sep; 90(9):4346-55. PubMed ID: 17699055 [TBL] [Abstract][Full Text] [Related]
10. Effects of milk replacer feeding strategies on performance, ruminal development, and metabolism of dairy calves. Silper BF; Lana AM; Carvalho AU; Ferreira CS; Franzoni AP; Lima JA; Saturnino HM; Reis RB; Coelho SG J Dairy Sci; 2014 Feb; 97(2):1016-25. PubMed ID: 24342682 [TBL] [Abstract][Full Text] [Related]
11. Inclusion of psyllium in milk replacer for neonatal calves. 2. Effects on volatile fatty acid concentrations, microbial populations, and gastrointestinal tract size. Cannon SJ; Fahey GC; Pope LL; Bauer LL; Wallace RL; Miller BL; Drackley JK J Dairy Sci; 2010 Oct; 93(10):4744-58. PubMed ID: 20855009 [TBL] [Abstract][Full Text] [Related]
12. Effects of adding extra molasses to a texturized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. Lesmeister KE; Heinrichs AJ J Dairy Sci; 2005 Jan; 88(1):411-8. PubMed ID: 15591407 [TBL] [Abstract][Full Text] [Related]
13. Effects of milk replacer program fed 2 or 4 times daily on nutrient intake and calf growth. Kmicikewycz AD; da Silva DN; Linn JG; Litherland NB J Dairy Sci; 2013 Feb; 96(2):1125-34. PubMed ID: 23219113 [TBL] [Abstract][Full Text] [Related]
14. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. Steele MA; Dionissopoulos L; AlZahal O; Doelman J; McBride BW J Dairy Sci; 2012 Jan; 95(1):318-27. PubMed ID: 22192211 [TBL] [Abstract][Full Text] [Related]
15. Effect of various levels of forage and form of diet on rumen development and growth in calves. Coverdale JA; Tyler HD; Quigley JD; Brumm JA J Dairy Sci; 2004 Aug; 87(8):2554-62. PubMed ID: 15328279 [TBL] [Abstract][Full Text] [Related]
16. Form of calf diet and the rumen. II: Impact on volatile fatty acid absorption. Yohe TT; Schramm H; White RR; Hanigan MD; Parsons CLM; Tucker HLM; Enger BD; Hardy NR; Daniels KM J Dairy Sci; 2019 Sep; 102(9):8502-8512. PubMed ID: 31279552 [TBL] [Abstract][Full Text] [Related]
17. Postprandial changes of selected blood and ruminal metabolites in ruminating calves fed diets with or without hay. Quigley JD; Steen TM; Boehms SI J Dairy Sci; 1992 Jan; 75(1):228-35. PubMed ID: 1541733 [TBL] [Abstract][Full Text] [Related]
18. Intensive liquid feeding of dairy calves with a medium crude protein milk replacer: Effects on performance, rumen, and blood parameters. de Paula MR; Oltramari CE; Silva JT; Gallo MPC; MourĂ£o GB; Bittar CMM J Dairy Sci; 2017 Jun; 100(6):4448-4456. PubMed ID: 28365119 [TBL] [Abstract][Full Text] [Related]
19. Replacing concentrates with a high-quality hay in the starter feed of dairy calves: II. Effects on the development of chewing and gut fermentation, and selected systemic health variables. Poier G; Terler G; Klevenhusen F; Sharma S; Zebeli Q J Dairy Sci; 2022 Apr; 105(4):3113-3128. PubMed ID: 35123780 [TBL] [Abstract][Full Text] [Related]
20. Influence of weaning method on growth, intake, and selected blood metabolites in Jersey calves. Quigley JD J Dairy Sci; 1996 Dec; 79(12):2255-60. PubMed ID: 9029364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]