These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 22541615)

  • 1. Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer.
    Tacelosky DM; Creecy AE; Shanmugavelandy SS; Smith JP; Claxton DF; Adair JH; Kester M; Barth BM
    Discov Med; 2012 Apr; 13(71):275-85. PubMed ID: 22541615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy.
    Huang P; Li Z; Lin J; Yang D; Gao G; Xu C; Bao L; Zhang C; Wang K; Song H; Hu H; Cui D
    Biomaterials; 2011 May; 32(13):3447-58. PubMed ID: 21303717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Photodynamic therapy: search for ideal photosensitizer].
    Kudinova NV; Berezov TT
    Biomed Khim; 2009; 55(5):558-69. PubMed ID: 20017389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles in photodynamic therapy: an emerging paradigm.
    Chatterjee DK; Fong LS; Zhang Y
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1627-37. PubMed ID: 18930086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia.
    Barth BM; I Altinoğlu E; Shanmugavelandy SS; Kaiser JM; Crespo-Gonzalez D; DiVittore NA; McGovern C; Goff TM; Keasey NR; Adair JH; Loughran TP; Claxton DF; Kester M
    ACS Nano; 2011 Jul; 5(7):5325-37. PubMed ID: 21675727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New trends and safety of photodynamic therapy].
    Osmałek T; Gośliński T; Mielcarek J; Osmałek E
    Przegl Lek; 2012; 69(11):1205-8. PubMed ID: 23646448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
    Lim CK; Heo J; Shin S; Jeong K; Seo YH; Jang WD; Park CR; Park SY; Kim S; Kwon IC
    Cancer Lett; 2013 Jul; 334(2):176-87. PubMed ID: 23017942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT.
    Robertson CA; Evans DH; Abrahamse H
    J Photochem Photobiol B; 2009 Jul; 96(1):1-8. PubMed ID: 19406659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy.
    Qian HS; Guo HC; Ho PC; Mahendran R; Zhang Y
    Small; 2009 Oct; 5(20):2285-90. PubMed ID: 19598161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric nanoparticles for photodynamic therapy.
    Lee YE; Kopelman R
    Methods Mol Biol; 2011; 726():151-78. PubMed ID: 21424449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer].
    Roblero-Bartolón GV; Ramón-Gallegos E
    Gac Med Mex; 2015; 151(1):85-98. PubMed ID: 25739488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica-based nanoparticles for photodynamic therapy applications.
    Couleaud P; Morosini V; Frochot C; Richeter S; Raehm L; Durand JO
    Nanoscale; 2010 Jul; 2(7):1083-95. PubMed ID: 20648332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer.
    Yin M; Li Z; Liu Z; Ren J; Yang X; Qu X
    Chem Commun (Camb); 2012 Jul; 48(52):6556-8. PubMed ID: 22622597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers.
    Li WT
    Curr Drug Metab; 2009 Oct; 10(8):851-60. PubMed ID: 20214580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles as vehicles for delivery of photodynamic therapy agents.
    Bechet D; Couleaud P; Frochot C; Viriot ML; Guillemin F; Barberi-Heyob M
    Trends Biotechnol; 2008 Nov; 26(11):612-21. PubMed ID: 18804298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells.
    Shen X; Li S; Li L; Yao SQ; Xu QH
    Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome.
    Vargas A; Eid M; Fanchaouy M; Gurny R; Delie F
    Eur J Pharm Biopharm; 2008 May; 69(1):43-53. PubMed ID: 18023564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic inactivation of viruses using upconversion nanoparticles.
    Lim ME; Lee YL; Zhang Y; Chu JJ
    Biomaterials; 2012 Feb; 33(6):1912-20. PubMed ID: 22153019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.