These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22541641)

  • 1. Mine water treatment with limestone for sulfate removal.
    Silva AM; Lima RM; Leão VA
    J Hazard Mater; 2012 Jun; 221-222():45-55. PubMed ID: 22541641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese and limestone interactions during mine water treatment.
    Silva AM; Cruz FL; Lima RM; Teixeira MC; Leão VA
    J Hazard Mater; 2010 Sep; 181(1-3):514-20. PubMed ID: 20570440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems.
    Sdiri A; Higashi T; Jamoussi F; Bouaziz S
    J Environ Manage; 2012 Jan; 93(1):245-53. PubMed ID: 22054591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.
    Guimarães D; Leão VA
    J Environ Manage; 2014 Dec; 145():106-12. PubMed ID: 25014887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.
    Labastida I; Armienta MA; Lara-Castro RH; Aguayo A; Cruz O; Ceniceros N
    J Hazard Mater; 2013 Nov; 262():1187-95. PubMed ID: 22819958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.
    Tolonen ET; Hu T; Rämö J; Lassi U
    J Environ Manage; 2016 Oct; 181():856-862. PubMed ID: 27397845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin.
    Haghsheno R; Mohebbi A; Hashemipour H; Sarrafi A
    J Hazard Mater; 2009 Jul; 166(2-3):961-6. PubMed ID: 19135783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass.
    Zhang X; Su H; Tan T; Xiao G
    J Hazard Mater; 2011 Oct; 193():1-9. PubMed ID: 21862214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter.
    Aziz HA; Yusoff MS; Adlan MN; Adnan NH; Alias S
    Waste Manag; 2004; 24(4):353-8. PubMed ID: 15081062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies.
    Bertoni FA; Medeot AC; González JC; Sala LF; Bellú SE
    J Colloid Interface Sci; 2015 May; 446():122-32. PubMed ID: 25660712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
    Al-Degs YS; El-Barghouthi MI; Issa AA; Khraisheh MA; Walker GM
    Water Res; 2006 Aug; 40(14):2645-58. PubMed ID: 16839582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals.
    Zvinowanda CM; Okonkwo JO; Sekhula MM; Agyei NM; Sadiku R
    J Hazard Mater; 2009 May; 164(2-3):884-91. PubMed ID: 18926626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of copper fixed-bed biosorption from wastewater by Posidonia oceanica.
    Izquierdo M; Gabaldón C; Marzal P; Alvarez-Hornos FJ
    Bioresour Technol; 2010 Jan; 101(2):510-7. PubMed ID: 19740651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.
    Saeed A; Sharif M; Iqbal M
    J Hazard Mater; 2010 Jul; 179(1-3):564-72. PubMed ID: 20381962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling for the evaluation of zinc removal efficiency on clay sorbent.
    Sarkar M; Sarkar AR; Goswami JL
    J Hazard Mater; 2007 Nov; 149(3):666-74. PubMed ID: 17532561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies.
    Kumar E; Bhatnagar A; Kumar U; Sillanpää M
    J Hazard Mater; 2011 Feb; 186(2-3):1042-9. PubMed ID: 21177029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution.
    Gupta K; Ghosh UC
    J Hazard Mater; 2009 Jan; 161(2-3):884-92. PubMed ID: 18502578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.