BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 22542191)

  • 21. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex.
    Thomsen K; Piilgaard H; Gjedde A; Bonvento G; Lauritzen M
    J Neurophysiol; 2009 Sep; 102(3):1503-12. PubMed ID: 19571198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.
    Biane JS; Takashima Y; Scanziani M; Conner JM; Tuszynski MH
    Neuron; 2016 Mar; 89(6):1173-1179. PubMed ID: 26948893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex.
    Monfils MH; VandenBerg PM; Kleim JA; Teskey GC
    Cereb Cortex; 2004 May; 14(5):586-93. PubMed ID: 15054074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity.
    Lang EJ
    J Neurophysiol; 2002 Apr; 87(4):1993-2008. PubMed ID: 11929918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time course of motor cortex reorganization following botulinum toxin injection into the vibrissal pad of the adult rat.
    Franchi G
    Eur J Neurosci; 2002 Oct; 16(7):1333-48. PubMed ID: 12405994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset.
    Ebina T; Obara K; Watakabe A; Masamizu Y; Terada SI; Matoba R; Takaji M; Hatanaka N; Nambu A; Mizukami H; Yamamori T; Matsuzaki M
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22844-22850. PubMed ID: 31636197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of human motor cortex excitability by the cholinesterase inhibitor rivastigmine.
    Langguth B; Bauer E; Feix S; Landgrebe M; Binder H; Sand P; Hajak G; Eichhammer P
    Neurosci Lett; 2007 Mar; 415(1):40-4. PubMed ID: 17303332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in electrical thresholds for evoking movements from the cat cerebral cortex following lesions of the sensori-motor area.
    Ring A; Rajandran H; Harvey A; Ghosh S
    Somatosens Mot Res; 2004 Jun; 21(2):117-36. PubMed ID: 15370092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord.
    Huang YZ; Rothwell JC; Lu CS; Wang J; Weng YH; Lai SC; Chuang WL; Hung J; Chen RS
    Clin Neurophysiol; 2009 Apr; 120(4):796-801. PubMed ID: 19231274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training.
    Ghosh S; Koh AH; Ring A
    Somatosens Mot Res; 2004 Jun; 21(2):99-115. PubMed ID: 15370091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats.
    Maggiolini E; Viaro R; Franchi G
    Eur J Neurosci; 2008 May; 27(10):2733-46. PubMed ID: 18547253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points.
    Van Acker GM; Amundsen SL; Messamore WG; Zhang HY; Luchies CW; Kovac A; Cheney PD
    J Neurophysiol; 2013 Sep; 110(5):1180-9. PubMed ID: 23741044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices.
    Jiang B; Kitamura A; Yasuda H; Sohya K; Maruyama A; Yanagawa Y; Obata K; Tsumoto T
    Eur J Neurosci; 2004 Aug; 20(3):709-18. PubMed ID: 15255981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex.
    Dong H; Shao Z; Nerbonne JM; Burkhalter A
    J Comp Neurol; 2004 Jul; 475(3):361-73. PubMed ID: 15221951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
    Hooks BM; Lin JY; Guo C; Svoboda K
    J Neurosci; 2015 Mar; 35(10):4418-26. PubMed ID: 25762684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Top-down laminar organization of the excitatory network in motor cortex.
    Weiler N; Wood L; Yu J; Solla SA; Shepherd GM
    Nat Neurosci; 2008 Mar; 11(3):360-6. PubMed ID: 18246064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved methods for chronic light-based motor mapping in mice: automated movement tracking with accelerometers, and chronic EEG recording in a bilateral thin-skull preparation.
    Silasi G; Boyd JD; Ledue J; Murphy TH
    Front Neural Circuits; 2013; 7():123. PubMed ID: 23966910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Readiness potential and movement initiation in the rat.
    Seki T; Gemba H; Matsuzaki R; Nakao K
    Jpn J Physiol; 2005 Feb; 55(1):1-9. PubMed ID: 15796784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.
    Petrus E; Rodriguez G; Patterson R; Connor B; Kanold PO; Lee HK
    J Neurosci; 2015 Jun; 35(23):8790-801. PubMed ID: 26063913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.