BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22542302)

  • 1. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS.
    Cestone B; Vogel-Mikuš K; Quartacci MF; Rascio N; Pongrac P; Pelicon P; Vavpetič P; Grlj N; Jeromel L; Kump P; Nečemer M; Regvar M; Navari-Izzo F
    Sci Total Environ; 2012 Jun; 427-428():339-46. PubMed ID: 22542302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and translocation of CuEDDS complexes by Brassica carinata.
    Cestone B; Quartacci MF; Navari-Izzo F
    Environ Sci Technol; 2010 Aug; 44(16):6403-8. PubMed ID: 20704241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of EDDS on the metabolic and transcriptional responses induced by copper in hydroponically grown Brassica carinata seedlings.
    Cestone B; Cuypers A; Vangronsveld J; Sgherri C; Navari-Izzo F
    Plant Physiol Biochem; 2012 Jun; 55():43-51. PubMed ID: 22522579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of chelant on Cu distribution and speciation in Lolium multiflorum by synchrotron techniques.
    Zhao YP; Cui JL; Chan TS; Dong JC; Chen DL; Li XD
    Sci Total Environ; 2018 Apr; 621():772-781. PubMed ID: 29202288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil.
    Wu LH; Sun XF; Luo YM; Xing XR; Christie P
    Int J Phytoremediation; 2007; 9(3):227-41. PubMed ID: 18246770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of time varying response on uptake patterns of Cu and Zn ions under application of ethylene diamine disuccinic acid and gibberellic acid in Lolium perenne.
    Borker AR; David K; Singhal N
    Chemosphere; 2020 Dec; 260():127541. PubMed ID: 32688311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun.
    Vamerali T; Bandiera M; Lucchini P; Mosca G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2434-46. PubMed ID: 24859698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF.
    Shi J; Yuan X; Chen X; Wu B; Huang Y; Chen Y
    Biol Trace Elem Res; 2011 Jun; 141(1-3):294-304. PubMed ID: 20449773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chelator induced phytoextraction and in situ soil washing of Cu.
    Kos B; Lestan D
    Environ Pollut; 2004 Nov; 132(2):333-9. PubMed ID: 15312945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-pixe spectrometry.
    Lomonte C; Wang Y; Doronila A; Gregory D; Baker AJ; Siegele R; Kolev SD
    Int J Phytoremediation; 2014; 16(7-12):1170-82. PubMed ID: 24933909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates.
    Quartacci MF; Irtelli B; Gonnelli C; Gabbrielli R; Navari-Izzo F
    Environ Pollut; 2009 Oct; 157(10):2697-703. PubMed ID: 19497650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids.
    Yang H; Wong JW; Yang ZM; Zhou LX
    J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent variation in copper tolerance and copper accumulation among crop species and varieties.
    Novello N; Ferfuia C; Pasković I; Fabris A; Baldini M; Schat H; Pošćić F
    Plant Physiol Biochem; 2020 Nov; 156():538-551. PubMed ID: 33059265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.