These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 22542445)

  • 1. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation.
    Myers CR
    Free Radic Biol Med; 2012 May; 52(10):2091-107. PubMed ID: 22542445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells.
    Myers JM; Myers CR
    Free Radic Biol Med; 2009 Nov; 47(10):1477-85. PubMed ID: 19703554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control.
    Myers JM; Antholine WE; Myers CR
    Toxicology; 2011 Mar; 281(1-3):37-47. PubMed ID: 21237240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells.
    Myers JM; Antholine WE; Myers CR
    Toxicology; 2008 Apr; 246(2-3):222-33. PubMed ID: 18328613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells.
    Myers CR; Myers JM
    Toxicology; 2009 Mar; 257(1-2):95-104. PubMed ID: 19135121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of acrolein on the thioredoxin system: implications for redox-sensitive signaling.
    Myers CR; Myers JM; Kufahl TD; Forbes R; Szadkowski A
    Mol Nutr Food Res; 2011 Sep; 55(9):1361-74. PubMed ID: 21812108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.
    Du Y; Zhang H; Zhang X; Lu J; Holmgren A
    J Biol Chem; 2013 Nov; 288(45):32241-32247. PubMed ID: 24062305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia.
    Floen MJ; Forred BJ; Bloom EJ; Vitiello PF
    Free Radic Biol Med; 2014 Oct; 75():167-77. PubMed ID: 25106706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox control of cell death.
    Ueda S; Masutani H; Nakamura H; Tanaka T; Ueno M; Yodoi J
    Antioxid Redox Signal; 2002 Jun; 4(3):405-14. PubMed ID: 12215208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.
    Pannala VR; Dash RK
    Free Radic Biol Med; 2015 Jan; 78():42-55. PubMed ID: 25451645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle.
    Dimauro I; Pearson T; Caporossi D; Jackson MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2017-27. PubMed ID: 23022873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol induces mitochondrial redox imbalance in alveolar macrophages.
    Liang Y; Harris FL; Jones DP; Brown LAS
    Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of thioredoxin-peroxiredoxin system.
    Araujo AS; Fernandes T; Ribeiro MF; Khaper N; Belló-Klein A
    J Cardiovasc Pharmacol; 2010 Nov; 56(5):513-7. PubMed ID: 20729758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3.
    Hanschmann EM; Lönn ME; Schütte LD; Funke M; Godoy JR; Eitner S; Hudemann C; Lillig CH
    J Biol Chem; 2010 Dec; 285(52):40699-705. PubMed ID: 20929858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury.
    Forred BJ; Daugaard DR; Titus BK; Wood RR; Floen MJ; Booze ML; Vitiello PF
    PLoS One; 2017; 12(1):e0168777. PubMed ID: 28045936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types.
    Selvaggio G; Coelho PMBM; Salvador A
    Redox Biol; 2018 May; 15():297-315. PubMed ID: 29304480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of MAP kinase p38 and IkappaB kinase in chromium (VI)-induced NF-kappaB and AP-1 activation.
    Chen F; Ding M; Lu Y; Leonard SS; Vallyathan V; Castranova V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(3):231-8. PubMed ID: 10983889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.
    Zhang H; Du Y; Zhang X; Lu J; Holmgren A
    Antioxid Redox Signal; 2014 Aug; 21(5):669-81. PubMed ID: 24295294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.