These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22542454)

  • 1. Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network.
    Plate L; Marletta MA
    Mol Cell; 2012 May; 46(4):449-60. PubMed ID: 22542454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in
    Nisbett LM; Binnenkade L; Bacon B; Hossain S; Kotloski NJ; Brutinel ED; Hartmann R; Drescher K; Arora DP; Muralidharan S; Thormann KM; Gralnick JA; Boon EM
    Biochemistry; 2019 Dec; 58(48):4827-4841. PubMed ID: 31682418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi.
    Liu N; Xu Y; Hossain S; Huang N; Coursolle D; Gralnick JA; Boon EM
    Biochemistry; 2012 Mar; 51(10):2087-99. PubMed ID: 22360279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.
    Rao M; Smith BC; Marletta MA
    mBio; 2015 May; 6(3):e00206-15. PubMed ID: 25944856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural basis for the regulation of an H-NOX-associated cyclic-di-GMP synthase/phosphodiesterase enzyme by nitric oxide-bound H-NOX.
    Lahiri T; Luan B; Raleigh DP; Boon EM
    Biochemistry; 2014 Apr; 53(13):2126-35. PubMed ID: 24628400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation-dependent derepression by the response regulator HnoC in the Shewanella oneidensis nitric oxide signaling network.
    Plate L; Marletta MA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):E4648-57. PubMed ID: 24218564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.
    Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE
    mBio; 2011; 2(5):. PubMed ID: 21990613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing domain interactions in soluble guanylate cyclase.
    Derbyshire ER; Winter MB; Ibrahim M; Deng S; Spiro TG; Marletta MA
    Biochemistry; 2011 May; 50(20):4281-90. PubMed ID: 21491957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Diguanylate Cyclase That Facilitates Biofilm Formation on Electrodes by Shewanella oneidensis MR-1.
    Matsumoto A; Koga R; Kanaly RA; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33637573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12.
    Yang Y; Li Y; Gao T; Zhang Y; Wang Q
    Res Microbiol; 2018; 169(4-5):205-213. PubMed ID: 29859892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
    Underbakke ES; Iavarone AT; Marletta MA
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6777-82. PubMed ID: 23572573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NosP Modulates Cyclic-di-GMP Signaling in
    Fischer JT; Hossain S; Boon EM
    Biochemistry; 2019 Oct; 58(42):4325-4334. PubMed ID: 31576744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is histidine dissociation a critical component of the NO/H-NOX signaling mechanism? Insights from X-ray absorption spectroscopy.
    Dai Z; Farquhar ER; Arora DP; Boon EM
    Dalton Trans; 2012 Jul; 41(26):7984-93. PubMed ID: 22430114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation.
    Mullershausen F; Russwurm M; Koesling D; Friebe A
    Mol Biol Cell; 2004 Sep; 15(9):4023-30. PubMed ID: 15240816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and regulation of soluble guanylate cyclase.
    Derbyshire ER; Marletta MA
    Annu Rev Biochem; 2012; 81():533-59. PubMed ID: 22404633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre.
    Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA
    Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica.
    Arora DP; Boon EM
    Biochem Biophys Res Commun; 2012 May; 421(3):521-6. PubMed ID: 22521885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of nitric oxide-sensitive guanylyl cyclase.
    Friebe A; Koesling D
    Circ Res; 2003 Jul; 93(2):96-105. PubMed ID: 12881475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme flattening is sufficient for signal transduction in the H-NOX family.
    Muralidharan S; Boon EM
    J Am Chem Soc; 2012 Feb; 134(4):2044-6. PubMed ID: 22257139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase.
    He Q; Wang F; Liu S; Zhu D; Cong H; Gao F; Li B; Wang H; Lin Z; Liao J; Gu L
    J Biol Chem; 2016 Feb; 291(7):3668-81. PubMed ID: 26668313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.