These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 22542528)
1. Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity. Geitner AJ; Schmid FX J Mol Biol; 2012 Jul; 420(4-5):335-49. PubMed ID: 22542528 [TBL] [Abstract][Full Text] [Related]
2. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding. Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867 [TBL] [Abstract][Full Text] [Related]
3. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain. Geitner AJ; Varga E; Wehmer M; Schmid FX J Mol Biol; 2013 Nov; 425(22):4089-98. PubMed ID: 23871892 [TBL] [Abstract][Full Text] [Related]
4. Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD. Zoldák G; Schmid FX J Mol Biol; 2011 Feb; 406(1):176-94. PubMed ID: 21147124 [TBL] [Abstract][Full Text] [Related]
5. Proximity effects on the protein domain level: engineering prolyl isomerases through combinatorial biochemistry. Reinstein J J Mol Biol; 2013 Nov; 425(22):4065-6. PubMed ID: 23911550 [No Abstract] [Full Text] [Related]
7. Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst-A Structural and Functional Analysis. Žoldák G; Knappe TA; Geitner AJ; Scholz C; Dobbek H; Schmid FX; Jakob RP Molecules; 2024 Mar; 29(7):. PubMed ID: 38611720 [TBL] [Abstract][Full Text] [Related]
8. A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Schlapschy M; Grimm S; Skerra A Protein Eng Des Sel; 2006 Aug; 19(8):385-90. PubMed ID: 16720693 [TBL] [Abstract][Full Text] [Related]
9. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA. Ramm K; Plückthun A J Mol Biol; 2001 Jul; 310(2):485-98. PubMed ID: 11428902 [TBL] [Abstract][Full Text] [Related]
10. Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Jakob RP; Zoldák G; Aumüller T; Schmid FX Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20282-7. PubMed ID: 19920179 [TBL] [Abstract][Full Text] [Related]
11. Prolyl isomerases in a minimal cell. Catalysis of protein folding by trigger factor from Mycoplasma genitalium. Bang H; Pecht A; Raddatz G; Scior T; Solbach W; Brune K; Pahl A Eur J Biochem; 2000 Jun; 267(11):3270-80. PubMed ID: 10824113 [TBL] [Abstract][Full Text] [Related]
12. SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities. Scholz C; Eckert B; Hagn F; Schaarschmidt P; Balbach J; Schmid FX Biochemistry; 2006 Jan; 45(1):20-33. PubMed ID: 16388577 [TBL] [Abstract][Full Text] [Related]
13. PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor. Liu CP; Zhou QM; Fan DJ; Zhou JM Int J Biochem Cell Biol; 2010 Jun; 42(6):890-901. PubMed ID: 20096367 [TBL] [Abstract][Full Text] [Related]
14. Dynamic association of trigger factor with protein substrates. Maier R; Scholz C; Schmid FX J Mol Biol; 2001 Dec; 314(5):1181-90. PubMed ID: 11743733 [TBL] [Abstract][Full Text] [Related]
15. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. Dartigalongue C; Raina S EMBO J; 1998 Jul; 17(14):3968-80. PubMed ID: 9670013 [TBL] [Abstract][Full Text] [Related]
16. The prolyl isomerase SlyD is a highly efficient enzyme but decelerates the conformational folding of a client protein. Zoldák G; Geitner AJ; Schmid FX J Am Chem Soc; 2013 Mar; 135(11):4372-9. PubMed ID: 23445547 [TBL] [Abstract][Full Text] [Related]
17. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. Kramer G; Rutkowska A; Wegrzyn RD; Patzelt H; Kurz TA; Merz F; Rauch T; Vorderwülbecke S; Deuerling E; Bukau B J Bacteriol; 2004 Jun; 186(12):3777-84. PubMed ID: 15175291 [TBL] [Abstract][Full Text] [Related]
18. Modular structure of the trigger factor required for high activity in protein folding. Zarnt T; Tradler T; Stoller G; Scholz C; Schmid FX; Fischer G J Mol Biol; 1997 Sep; 271(5):827-37. PubMed ID: 9299330 [TBL] [Abstract][Full Text] [Related]
19. Role of periplasmic chaperones and BamA (YaeT/Omp85) in folding and secretion of intimin from enteropathogenic Escherichia coli strains. Bodelón G; Marín E; Fernández LA J Bacteriol; 2009 Aug; 191(16):5169-79. PubMed ID: 19525348 [TBL] [Abstract][Full Text] [Related]
20. Wheat FKBP73 functions in vitro as a molecular chaperone independently of its peptidyl prolyl cis-trans isomerase activity. Kurek I; Pirkl F; Fischer E; Buchner J; Breiman A Planta; 2002 May; 215(1):119-26. PubMed ID: 12012248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]