BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22542899)

  • 21. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.
    Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N
    Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards the competent conformation for catalysis in the ferredoxin-NADP
    Pérez-Amigot D; Taleb V; Boneta S; Anoz-Carbonell E; Sebastián M; Velázquez-Campoy A; Polo V; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148058. PubMed ID: 31394095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases.
    Musumeci MA; Botti H; Buschiazzo A; Ceccarelli EA
    Biochemistry; 2011 Mar; 50(12):2111-22. PubMed ID: 21306142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the flavin si-face tyrosine on the structure and function of ferredoxin-NADP+ reductases.
    Arakaki AK; Orellano EG; Calcaterra NB; Ottado J; Ceccarelli EA
    J Biol Chem; 2001 Nov; 276(48):44419-26. PubMed ID: 11577105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C-terminal residues of ferredoxin-NAD(P)
    Seo D; Asano T
    Photosynth Res; 2018 Jun; 136(3):275-290. PubMed ID: 29119426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Open questions in ferredoxin-NADP+ reductase catalytic mechanism.
    Carrillo N; Ceccarelli EA
    Eur J Biochem; 2003 May; 270(9):1900-15. PubMed ID: 12709048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase.
    Calcaterra NB; Picó GA; Orellano EG; Ottado J; Carrillo N; Ceccarelli EA
    Biochemistry; 1995 Oct; 34(39):12842-8. PubMed ID: 7548039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants.
    Hurley JK; Weber-Main AM; Stankovich MT; Benning MM; Thoden JB; Vanhooke JL; Holden HM; Chae YK; Xia B; Cheng H; Markley JL; Martinez-Júlvez M; Gómez-Moreno C; Schmeits JL; Tollin G
    Biochemistry; 1997 Sep; 36(37):11100-17. PubMed ID: 9287153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase.
    Aliverti A; Deng Z; Ravasi D; Piubelli L; Karplus PA; Zanetti G
    J Biol Chem; 1998 Dec; 273(51):34008-15. PubMed ID: 9852055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution.
    Serre L; Vellieux FM; Medina M; Gomez-Moreno C; Fontecilla-Camps JC; Frey M
    J Mol Biol; 1996 Oct; 263(1):20-39. PubMed ID: 8890910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin.
    Seo D; Soeta T; Sakurai H; Sétif P; Sakurai T
    Biochim Biophys Acta; 2016 Jun; 1857(6):678-87. PubMed ID: 26965753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates.
    Faro M; Frago S; Mayoral T; Hermoso JA; Sanz-Aparicio J; Gómez-Moreno C; Medina M
    Eur J Biochem; 2002 Oct; 269(20):4938-47. PubMed ID: 12383252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide.
    Dupuy DL; Rial DV; Ceccarelli EA
    Eur J Biochem; 2004 Nov; 271(22):4582-93. PubMed ID: 15560800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase.
    Piubelli L; Aliverti A; Arakaki AK; Carrillo N; Ceccarelli EA; Karplus PA; Zanetti G
    J Biol Chem; 2000 Apr; 275(14):10472-6. PubMed ID: 10744737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-sulfur cluster cysteine-to-serine mutants of Anabaena -2Fe-2S- ferredoxin exhibit unexpected redox properties and are competent in electron transfer to ferredoxin:NADP+ reductase.
    Hurley JK; Weber-Main AM; Hodges AE; Stankovich MT; Benning MM; Holden HM; Cheng H; Xia B; Markley JL; Genzor C; Gomez-Moreno C; Hafezi R; Tollin G
    Biochemistry; 1997 Dec; 36(49):15109-17. PubMed ID: 9398238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmodium falciparum ferredoxin-NADP+ reductase His286 plays a dual role in NADP(H) binding and catalysis.
    Crobu D; Canevari G; Milani M; Pandini V; Vanoni MA; Bolognesi M; Zanetti G; Aliverti A
    Biochemistry; 2009 Oct; 48(40):9525-33. PubMed ID: 19736991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa.
    Wang A; Rodríguez JC; Han H; Schönbrunn E; Rivera M
    Biochemistry; 2008 Aug; 47(31):8080-93. PubMed ID: 18605699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119.
    Medina M; Martinez-Júlvez M; Hurley JK; Tollin G; Gómez-Moreno C
    Biochemistry; 1998 Mar; 37(9):2715-28. PubMed ID: 9485422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase.
    Bortolotti A; Pérez-Dorado I; Goñi G; Medina M; Hermoso JA; Carrillo N; Cortez N
    Biochim Biophys Acta; 2009 Feb; 1794(2):199-210. PubMed ID: 18973834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer.
    Xia C; Rwere F; Im S; Shen AL; Waskell L; Kim JP
    Biochemistry; 2018 Feb; 57(6):945-962. PubMed ID: 29308883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.