These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2254304)

  • 61. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding.
    Anders A; Lilie H; Franke K; Kapp L; Stelling J; Gilles ED; Breunig KD
    J Biol Chem; 2006 Sep; 281(39):29337-48. PubMed ID: 16867978
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alternating zinc fingers in the human male associated protein ZFY: 2D NMR structure of an even finger and implications for "jumping-linker" DNA recognition.
    Kochoyan M; Havel TF; Nguyen DT; Dahl CE; Keutmann HT; Weiss MA
    Biochemistry; 1991 Apr; 30(14):3371-86. PubMed ID: 1849423
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The DNA binding domains of the yeast Gal4 and human c-Jun transcription factors interact through the zinc-finger and bZIP motifs.
    Sollerbrant K; Akusjärvi G; Linder S; Svensson C
    Nucleic Acids Res; 1995 Feb; 23(4):588-94. PubMed ID: 7899077
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators.
    Schjerling P; Holmberg S
    Nucleic Acids Res; 1996 Dec; 24(23):4599-607. PubMed ID: 8967907
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis.
    Zenke FT; Kapp L; Breunig KD
    Biol Chem; 1999 Apr; 380(4):419-30. PubMed ID: 10355628
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kluyveromyces lactis SEF1 and its Saccharomyces cerevisiae homologue bypass the unknown essential function, but not the mitochondrial RNase P function, of the S. cerevisiae RPM2 gene.
    Groom KR; Heyman HC; Steffen MC; Hawkins L; Martin NC
    Yeast; 1998 Jan; 14(1):77-87. PubMed ID: 9483797
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Relationship between zinc content and DNA-binding activity of the DNA-binding motif of the transcription factor ALCR in Aspergillus nidulans.
    Sequeval D; Felenbok B
    Mol Gen Genet; 1994 Jan; 242(1):33-9. PubMed ID: 8277945
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metal-thiolate clusters in the C-terminal domain of human neuronal growth inhibitory factor (GIF).
    Hasler DW; Faller P; Vasák M
    Biochemistry; 1998 Oct; 37(42):14966-73. PubMed ID: 9778374
    [TBL] [Abstract][Full Text] [Related]  

  • 69. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Determination of the DNA binding site of the GAL4 protein. A photo-CIDNP study.
    Serikawa Y; Shirakawa M; Kyogoku Y
    FEBS Lett; 1992 Mar; 299(3):205-8. PubMed ID: 1544495
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cloning of cutinase transcription factor 1, a transactivating protein containing Cys6Zn2 binuclear cluster DNA-binding motif.
    Li D; Kolattukudy PE
    J Biol Chem; 1997 May; 272(19):12462-7. PubMed ID: 9139694
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain.
    Hidalgo P; Ansari AZ; Schmidt P; Hare B; Simkovich N; Farrell S; Shin EJ; Ptashne M; Wagner G
    Genes Dev; 2001 Apr; 15(8):1007-20. PubMed ID: 11316794
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Zinc co-ordination in the DNA-binding domain of the yeast transcriptional activator PPR1.
    Ball LJ; Diakun GP; Gadhavi PL; Young NA; Armstrong EM; Garner CD; Laue ED
    FEBS Lett; 1995 Jan; 358(3):278-82. PubMed ID: 7843415
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1).
    Guerrerio AL; Berg JM
    Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study.
    Giedroc DP; Chen X; Pennella MA; LiWang AC
    J Biol Chem; 2001 Nov; 276(45):42322-32. PubMed ID: 11524427
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein.
    Cahuzac B; Cerdan R; Felenbok B; Guittet E
    Structure; 2001 Sep; 9(9):827-36. PubMed ID: 11566132
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Accurate initiation of mRNA synthesis in extracts from Schizosaccharomyces pombe, Kluyveromyces lactis and Candida glabrata.
    Woontner M; Jaehning JA
    Yeast; 1993 Dec; 9(12):1331-4. PubMed ID: 8154183
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spectroscopic characterization of Co(II)-, Ni(II)-, and Cd(II)-substituted wild-type and non-native retroviral-type zinc finger peptides.
    Chen X; Chu M; Giedroc DP
    J Biol Inorg Chem; 2000 Feb; 5(1):93-101. PubMed ID: 10766441
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spectroscopic studies of the DNA binding site of the GAL4 "zinc finger" protein.
    Hansen A; Van Hoy M; Kodadek T
    Biochem Biophys Res Commun; 1991 Mar; 175(2):492-9. PubMed ID: 2018497
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of the ABF1-homologue from Kluyveromyces marxianus.
    Oberyé EH; Maurer K; Mager WH; Planta RJ
    Biochim Biophys Acta; 1993 May; 1173(2):233-6. PubMed ID: 7916634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.