These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Regulation of muscle phosphofructokinase by physiological concentrations of bisphosphorylated hexoses: effect of alkalinization. Andrés V; Carreras J; Cussó R Biochem Biophys Res Commun; 1990 Oct; 172(1):328-34. PubMed ID: 2145837 [TBL] [Abstract][Full Text] [Related]
6. Increase in glucose 1,6-bisphosphate levels, activation of phosphofructokinase and phosphoglucomutase, and inhibition of glucose 1,6-bisphosphatase in muscle induced by trifluoperazine. Frucht H; Kaplansky M; Beitner R Biochem Med; 1984 Feb; 31(1):122-9. PubMed ID: 6331422 [TBL] [Abstract][Full Text] [Related]
7. Glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels in different types of rat skeletal muscle. Bassols AM; Cussó R; Carreras J Comp Biochem Physiol B; 1987; 88(3):843-5. PubMed ID: 2827951 [TBL] [Abstract][Full Text] [Related]
8. G-1,6-P2 in human skeletal muscle after isometric contraction. Katz A; Lee AD Am J Physiol; 1988 Aug; 255(2 Pt 1):C145-8. PubMed ID: 3407760 [TBL] [Abstract][Full Text] [Related]
9. Effects of vanadate and insulin on glucose 1,6-P2 and fructose 2,6-P2 levels in rat skeletal muscle. Carreras M; Bassols AM; Carreras J; Climent F Biochem Int; 1988 Aug; 17(2):359-66. PubMed ID: 3056413 [TBL] [Abstract][Full Text] [Related]
10. Influence of bradykinin on glucose 1,6-bisphosphate and cyclic GMP levels and on the activities of glucose 1,6-bisphosphatase, phosphofructokinase and phosphoglucomutase in muscle. Frucht H; Lilling G; Beitner R Int J Biochem; 1984; 16(4):397-402. PubMed ID: 6325266 [TBL] [Abstract][Full Text] [Related]
11. Trifluoperazine abolishes the actions of bradykinin on glucose 1,6-bisphosphate levels and on the activities of glucose 1,6-bisphosphatase, phosphofructokinase and phosphoglucomutase. Beitner R; Kaplansky M; Frucht H Int J Biochem; 1985; 17(4):545-50. PubMed ID: 2989025 [TBL] [Abstract][Full Text] [Related]
12. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Dimitriadis G; Parry-Billings M; Bevan S; Dunger D; Piva T; Krause U; Wegener G; Newsholme EA Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):269-74. PubMed ID: 1637311 [TBL] [Abstract][Full Text] [Related]
13. Altered glucose 1,6-bisphosphate and fructose 2,6-biphosphate levels in low-frequency stimulated rabbit fast-twitch muscle. Green HJ; Cadefau J; Pette D FEBS Lett; 1991 Apr; 282(1):107-9. PubMed ID: 2026244 [TBL] [Abstract][Full Text] [Related]
14. Relationship between carbohydrate oxidation and G-1,6-P2 in human skeletal muscle during euglycemic hyperinsulinemia. Katz A; Bogardus C Am J Physiol; 1991 Jan; 260(1 Pt 2):R113-9. PubMed ID: 1825156 [TBL] [Abstract][Full Text] [Related]
15. Complementarity in the regulation of phosphoglucomutase, phosphofructokinase and hexokinase; the role of glucose 1,6-bisphosphate. Beitner R; Haberman S; Livni L Biochim Biophys Acta; 1975 Aug; 397(2):355-69. PubMed ID: 125609 [TBL] [Abstract][Full Text] [Related]
16. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction. Bassols AM; Carreras J; Cussó R Biochem J; 1986 Dec; 240(3):747-51. PubMed ID: 3827864 [TBL] [Abstract][Full Text] [Related]
17. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle. Katz A Am J Physiol; 1988 Aug; 255(2 Pt 1):C140-4. PubMed ID: 3407759 [TBL] [Abstract][Full Text] [Related]
18. Muscle fructose-2,6-bisphosphate and glucose-1,6-bisphosphate during insulin-induced hypoglycemia. Winder WW; Carling JM; Duan C; Jones JP; Palmer SL; Walker MC J Appl Physiol (1985); 1994 Feb; 76(2):853-8. PubMed ID: 8175599 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of glucose utilization by fructose in isolated rat hepatocytes. Fillat C; Gómez-Foix AM; Guinovart JJ Arch Biochem Biophys; 1993 Feb; 300(2):564-9. PubMed ID: 8382026 [TBL] [Abstract][Full Text] [Related]
20. Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, mitochondrial hexokinase, glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle. Chen-Zion M; Bassukevitz Y; Beitner R Int J Biochem; 1992 Oct; 24(10):1661-7. PubMed ID: 1397493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]