These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22543075)
1. Fast-spiking interneurons and gamma oscillations may be involved in the antidepressant effects of ketamine. Zhou ZQ; Zhang GF; Li XM; Yang C; Yang JJ Med Hypotheses; 2012 Jul; 79(1):85-6. PubMed ID: 22543075 [TBL] [Abstract][Full Text] [Related]
2. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Widman AJ; McMahon LL Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3007-E3016. PubMed ID: 29531088 [TBL] [Abstract][Full Text] [Related]
3. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Koike H; Chaki S Behav Brain Res; 2014 Sep; 271():111-5. PubMed ID: 24909673 [TBL] [Abstract][Full Text] [Related]
4. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine. Shi WX; Zhang XX J Pharmacol Exp Ther; 2003 May; 305(2):680-7. PubMed ID: 12606677 [TBL] [Abstract][Full Text] [Related]
5. Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: An in vivo electrophysiological study on monoaminergic and glutamatergic neurons. El Iskandrani KS; Oosterhof CA; El Mansari M; Blier P J Psychopharmacol; 2015 Jul; 29(7):792-801. PubMed ID: 25759403 [TBL] [Abstract][Full Text] [Related]
6. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Miller OH; Moran JT; Hall BJ Neuropharmacology; 2016 Jan; 100():17-26. PubMed ID: 26211972 [TBL] [Abstract][Full Text] [Related]
7. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Maeng S; Zarate CA; Du J; Schloesser RJ; McCammon J; Chen G; Manji HK Biol Psychiatry; 2008 Feb; 63(4):349-52. PubMed ID: 17643398 [TBL] [Abstract][Full Text] [Related]
8. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Koike H; Iijima M; Chaki S Behav Brain Res; 2011 Oct; 224(1):107-11. PubMed ID: 21669235 [TBL] [Abstract][Full Text] [Related]
9. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Amat-Foraster M; Celada P; Richter U; Jensen AA; Plath N; Artigas F; Herrik KF Neuropharmacology; 2019 Nov; 158():107745. PubMed ID: 31445017 [TBL] [Abstract][Full Text] [Related]
10. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. Ghasemi M; Raza M; Dehpour AR J Psychopharmacol; 2010 Apr; 24(4):585-94. PubMed ID: 19351802 [TBL] [Abstract][Full Text] [Related]
11. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Nguyen L; Matsumoto RR Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358 [TBL] [Abstract][Full Text] [Related]
12. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Lauterbach EC Med Hypotheses; 2012 Jun; 78(6):693-702. PubMed ID: 22401777 [TBL] [Abstract][Full Text] [Related]
13. Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons. Bonsi P; Sciamanna G; Mitrano DA; Cuomo D; Bernardi G; Platania P; Smith Y; Pisani A Eur J Neurosci; 2007 Mar; 25(5):1319-31. PubMed ID: 17425558 [TBL] [Abstract][Full Text] [Related]
14. The role of glutamate on the action of antidepressants. Hashimoto K Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug; 35(7):1558-68. PubMed ID: 20600468 [TBL] [Abstract][Full Text] [Related]
15. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267 [TBL] [Abstract][Full Text] [Related]
16. N-methyl-D-aspartate glutamate receptor antagonists and the promise of rapid-acting antidepressants. Krystal JH Arch Gen Psychiatry; 2010 Nov; 67(11):1110-1. PubMed ID: 21041611 [No Abstract] [Full Text] [Related]
17. AMPA glutamate receptors mediate the antidepressant-like effects of N-acetylcysteine in the mouse tail suspension test. Linck VM; Costa-Campos L; Pilz LK; Garcia CR; Elisabetsky E Behav Pharmacol; 2012 Apr; 23(2):171-7. PubMed ID: 22327021 [TBL] [Abstract][Full Text] [Related]
18. Generation of slow network oscillations in the developing rat hippocampus after blockade of glutamate uptake. Cattani AA; Bonfardin VD; Represa A; Ben-Ari Y; Aniksztejn L J Neurophysiol; 2007 Oct; 98(4):2324-36. PubMed ID: 17634340 [TBL] [Abstract][Full Text] [Related]
19. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Pinault D Biol Psychiatry; 2008 Apr; 63(8):730-5. PubMed ID: 18022604 [TBL] [Abstract][Full Text] [Related]
20. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice. Lindholm JS; Autio H; Vesa L; Antila H; Lindemann L; Hoener MC; Skolnick P; Rantamäki T; Castrén E Neuropharmacology; 2012 Jan; 62(1):391-7. PubMed ID: 21867718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]