These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2254309)

  • 61. Site-directed mutagenesis of the substrate binding site of porcine fructose-1,6-bisphosphatase.
    Shyur LF; Zhang R; Fromm HJ
    Arch Biochem Biophys; 1995 May; 319(1):123-7. PubMed ID: 7771775
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis.
    Mueller EJ; Oh S; Kavalerchik E; Kappock TJ; Meyer E; Li C; Ealick SE; Stubbe J
    Biochemistry; 1999 Aug; 38(31):9831-9. PubMed ID: 10433689
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding.
    Zhou L; Thornburg R
    Arch Biochem Biophys; 1998 Oct; 358(2):297-302. PubMed ID: 9784243
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phospholipase A2 engineering. Probing the structural and functional roles of N-terminal residues with site-directed mutagenesis, X-ray, and NMR.
    Liu X; Zhu H; Huang B; Rogers J; Yu BZ; Kumar A; Jain MK; Sundaralingam M; Tsai MD
    Biochemistry; 1995 Jun; 34(22):7322-34. PubMed ID: 7779775
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Engineered monomeric human histidine triad nucleotide-binding protein 1 hydrolyzes fluorogenic acyl-adenylate and lysyl-tRNA synthetase-generated lysyl-adenylate.
    Chou TF; Tikh IB; Horta BA; Ghosh B; De Alencastro RB; Wagner CR
    J Biol Chem; 2007 May; 282(20):15137-47. PubMed ID: 17337452
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.
    Yuan C; Kent C
    J Biol Chem; 2004 Apr; 279(17):17801-9. PubMed ID: 14960577
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phospholipase A2 engineering. Structural and functional roles of highly conserved active site residues tyrosine-52 and tyrosine-73.
    Dupureur CM; Yu BZ; Jain MK; Noel JP; Deng T; Li Y; Byeon IJ; Tsai MD
    Biochemistry; 1992 Jul; 31(28):6402-13. PubMed ID: 1633153
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Site-directed mutagenesis of Gly-15 and Gly-20 in the glycine-rich region of adenylate kinase.
    Yoneya T; Tagaya M; Kishi F; Nakazawa A; Fukui T
    J Biochem; 1989 Feb; 105(2):158-60. PubMed ID: 2542234
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ATP-AMP phosphotransferase from Paracoccus denitrificans.
    Yeh SS; Tomasselli AG; Noda LH
    Eur J Biochem; 1983 Nov; 136(3):523-9. PubMed ID: 6315432
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ATP hydrolysis is not stoichiometrically linked with proteolysis in the ATP-dependent protease La from Escherichia coli.
    Fischer H; Glockshuber R
    J Biol Chem; 1993 Oct; 268(30):22502-7. PubMed ID: 8226758
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NMR identification of transient complexes critical to adenylate kinase catalysis.
    Adén J; Wolf-Watz M
    J Am Chem Soc; 2007 Nov; 129(45):14003-12. PubMed ID: 17935333
    [TBL] [Abstract][Full Text] [Related]  

  • 73. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis.
    Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF
    Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model.
    Kim HJ; Nishikawa S; Tokutomi Y; Takenaka H; Hamada M; Kuby SA; Uesugi S
    Biochemistry; 1990 Feb; 29(5):1107-11. PubMed ID: 2157484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis.
    Ishii S; Mizuguchi H; Nishino J; Hayashi H; Kagamiyama H
    J Biochem; 1996 Aug; 120(2):369-76. PubMed ID: 8889823
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacteriophage T7 RNA polymerase and its active-site mutants. Kinetic, spectroscopic and calorimetric characterization.
    Osumi-Davis PA; Sreerama N; Volkin DB; Middaugh CR; Woody RW; Woody AY
    J Mol Biol; 1994 Mar; 237(1):5-19. PubMed ID: 8133519
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.
    Lu Q; Inouye M
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5720-5. PubMed ID: 8650159
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Active site residues of human brain hexokinase as studied by site-specific mutagenesis.
    Zeng C; Fromm HJ
    J Biol Chem; 1995 May; 270(18):10509-13. PubMed ID: 7737985
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes.
    Stuible H; Büttner D; Ehlting J; Hahlbrock K; Kombrink E
    FEBS Lett; 2000 Feb; 467(1):117-22. PubMed ID: 10664468
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of water in the enzymatic catalysis: study of ATP + AMP → 2ADP conversion by adenylate kinase.
    Adkar BV; Jana B; Bagchi B
    J Phys Chem A; 2011 Apr; 115(16):3691-7. PubMed ID: 20836529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.