These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2254309)

  • 81. Inactivation of rabbit, pig, and carp adenylate kinases by N6-o- and p-fluorobenzoyladenosine 5'-triphosphates.
    Hampton A; Slotin LA
    Biochemistry; 1975 Dec; 14(25):5438-44. PubMed ID: 172123
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mechanism of adenylate kinase. The conserved aspartates 140 and 141 are important for transition state stabilization instead of substrate-induced conformational changes.
    Dahnke T; Tsai MD
    J Biol Chem; 1994 Mar; 269(11):8075-81. PubMed ID: 8132532
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Analysis of truncated forms of Bombyx mori glycyl-tRNA synthetase: function of an N-terminal structure in RNA binding.
    Wu H; Nada S; Dignam JD
    Biochemistry; 1995 Dec; 34(50):16327-36. PubMed ID: 8845358
    [TBL] [Abstract][Full Text] [Related]  

  • 84. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly.
    Mikawa T; Masui R; Ogawa T; Ogawa H; Kuramitsu S
    J Mol Biol; 1995 Jul; 250(4):471-83. PubMed ID: 7616568
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The activity of carboxypeptidase Y toward substrates with basic P1 amino acid residues is drastically increased by mutational replacement of leucine 178.
    Olesen K; Mortensen UH; Aasmul-Olsen S; Kielland-Brandt MC; Remington SJ; Breddam K
    Biochemistry; 1994 Sep; 33(37):11121-6. PubMed ID: 7727363
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mechanism of adenylate kinase. 1H, 13C, and 15N NMR assignments, secondary structures, and substrate binding sites.
    Byeon IJ; Yan H; Edison AS; Mooberry ES; Abildgaard F; Markley JL; Tsai MD
    Biochemistry; 1993 Nov; 32(46):12508-21. PubMed ID: 8241142
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Analysis of the ATP/GTP binding site of casein kinase II by site-directed mutagenesis.
    Jakobi R; Traugh JA
    Physiol Chem Phys Med NMR; 1995; 27(4):293-301. PubMed ID: 8768785
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Design of substrate-site-directed inhibitors of adenylate kinase and hexokinase. Effect of substrate substituents on affinity on affinity for the adenine nucleotide sites.
    Hampton A; Slotin LA; Kappler F; Sasaki T; Perini F
    J Med Chem; 1976 Dec; 19(12):1371-7. PubMed ID: 187750
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mutational analysis of the active-site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani.
    Datta R; Das I; Sen B; Chakraborty A; Adak S; Mandal C; Datta AK
    Biochem J; 2005 May; 387(Pt 3):591-600. PubMed ID: 15606359
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanism of adenylate kinase. Are the essential lysines essential?
    Tian GC; Yan HG; Jiang RT; Kishi F; Nakazawa A; Tsai MD
    Biochemistry; 1990 May; 29(18):4296-304. PubMed ID: 2161682
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The structure of a trimeric archaeal adenylate kinase.
    Vonrhein C; Bönisch H; Schäfer G; Schulz GE
    J Mol Biol; 1998 Sep; 282(1):167-79. PubMed ID: 9733648
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Chemical mechanism of the fructose-6-phosphate,2-kinase reaction from the pH dependence of kinetic parameters of site-directed mutants of active site basic residues.
    Mizuguchi H; Cook PF; Hasemann CA; Uyeda K
    Biochemistry; 1997 Jul; 36(29):8775-84. PubMed ID: 9220964
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Wang Y; Darnay BG; Rodwell VW
    J Biol Chem; 1990 Dec; 265(35):21634-41. PubMed ID: 2123872
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae. Study of its functional organisation by deletion analysis.
    Eriani G; Prevost G; Kern D; Vincendon P; Dirheimer G; Gangloff J
    Eur J Biochem; 1991 Sep; 200(2):337-43. PubMed ID: 1889402
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The role of Leu-190 in the function and stability of adenylate kinase.
    Yoneya T; Okajima T; Tagaya M; Tanizawa K; Fukui T
    J Biol Chem; 1990 Dec; 265(35):21488-93. PubMed ID: 2254309
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Role of leucine 66 in the asymmetric recognition of substrates in chicken muscle adenylate kinase.
    Okajima T; Tanizawa K; Yoneya T; Fukui T
    J Biol Chem; 1991 Jun; 266(18):11442-7. PubMed ID: 2050660
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Site-directed random mutagenesis of AMP-binding residues in adenylate kinase.
    Okajima T; Tanizawa K; Fukui T
    J Biochem; 1993 Nov; 114(5):627-33. PubMed ID: 8113212
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The steady-state kinetics of the enzyme reaction tested by site-directed mutagenesis of hydrophobic residues (Val, Leu, and Cys) in the C-terminal alpha-helix of human adenylate kinase.
    Ayabe T; Park SK; Takenaka H; Takenaka O; Maruyama H; Sumida M; Onitsuka T; Hamada M
    J Biochem; 2000 Aug; 128(2):181-7. PubMed ID: 10920252
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nonfixed relationship of the Michaelis constant and maximum velocity with their corresponding rate constants.
    Hibino T
    J Biol Chem; 2005 Sep; 280(35):30671-80. PubMed ID: 15972825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.