These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22543470)

  • 21. A three-dimensional MRI analysis of knee kinematics.
    Patel VV; Hall K; Ries M; Lotz J; Ozhinsky E; Lindsey C; Lu Y; Majumdar S
    J Orthop Res; 2004 Mar; 22(2):283-92. PubMed ID: 15013086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study.
    Yin L; Chen K; Guo L; Cheng L; Wang F; Yang L
    PLoS One; 2015; 10(6):e0128877. PubMed ID: 26039711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bicruciate-retaining total knee arthroplasty reproduces in vivo kinematics of normal knees to a lower extent than unicompartmental knee arthroplasty.
    Kono K; Inui H; Tomita T; Yamazaki T; Taketomi S; Tanaka S
    Knee Surg Sports Traumatol Arthrosc; 2020 Sep; 28(9):3007-3015. PubMed ID: 31641811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patient Variation Limits Use of Fixed References for Femoral Rotation Component Alignment in Total Knee Arthroplasty.
    Twiggs JG; Dickison DM; Kolos EC; Wilcox CE; Roe JP; Fritsch BA; McMahon SJ; Miles BP; Ruys AJ
    J Arthroplasty; 2018 Jan; 33(1):67-74. PubMed ID: 28927560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo kinematics of a newly updated posterior-stabilised mobile-bearing total knee arthroplasty in weight-bearing and non-weight-bearing high-flexion activities.
    Kage T; Inui H; Tomita T; Yamazaki T; Taketomi S; Yamagami R; Kono K; Kawaguchi K; Sameshima S; Tanaka S
    Knee; 2021 Mar; 29():183-189. PubMed ID: 33640617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexion Space Balancing Through Component Positioning and Its Relationship to Traditional Anatomic Rotational Landmarks in Robotic Total Knee Arthroplasty.
    Nodzo SR; Staub TM; Jancuska JM; Cobler-Lichter MD; Boyle KK; Rachala S
    J Arthroplasty; 2020 Jun; 35(6):1569-1575. PubMed ID: 32057599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The flexion space is more reliably balanced when using the transepicondylar axis as compared to the posterior condylar line.
    Nodzo SR; Franceschini V; Cruz DS; Gonzalez Della Valle A
    Knee Surg Sports Traumatol Arthrosc; 2018 Nov; 26(11):3265-3271. PubMed ID: 29417169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty.
    Mochizuki T; Sato T; Tanifuji O; Kobayashi K; Koga Y; Yamagiwa H; Omori G; Endo N
    J Orthop Sci; 2013 Jan; 18(1):54-60. PubMed ID: 23114856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty.
    Li G; Suggs J; Hanson G; Durbhakula S; Johnson T; Freiberg A
    J Bone Joint Surg Am; 2006 Feb; 88(2):395-402. PubMed ID: 16452753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional in vivo dynamic motion analysis of anterior cruciate ligament-deficient knees during squatting using geometric center axis of the femur.
    Murayama T; Sato T; Watanabe S; Kobayashi K; Tanifuji O; Mochizuki T; Yamagiwa H; Koga Y; Omori G; Endo N
    J Orthop Sci; 2016 Mar; 21(2):159-65. PubMed ID: 26714666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations.
    Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS
    Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the orientation of knee functional flexion axis during passive flexion and extension movements in navigated total knee arthroplasty.
    Colle F; Bruni D; Iacono F; Visani A; Zaffagnini S; Marcacci M; Lopomo N
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2461-9. PubMed ID: 26438246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique.
    Asano T; Akagi M; Nakamura T
    J Arthroplasty; 2005 Dec; 20(8):1060-7. PubMed ID: 16376264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty.
    Stiehl JB; Abbott BD
    J Arthroplasty; 1995 Dec; 10(6):785-9. PubMed ID: 8749761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vivo Kinematic Comparison of a Bicruciate Stabilized Total Knee Arthroplasty and the Normal Knee Using Fluoroscopy.
    Grieco TF; Sharma A; Dessinger GM; Cates HE; Komistek RD
    J Arthroplasty; 2018 Feb; 33(2):565-571. PubMed ID: 29066105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The clinical epicondylar axis is not the functional flexion axis of the human knee.
    Mochizuki T; Sato T; Blaha JD; Tanifuji O; Kobayashi K; Yamagiwa H; Watanabe S; Koga Y; Omori G; Endo N
    J Orthop Sci; 2014 May; 19(3):451-6. PubMed ID: 24510360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematics of mobile-bearing unicompartmental knee arthroplasty compared to native: results from an in vitro study.
    Peersman G; Slane J; Vuylsteke P; Fuchs-Winkelmann S; Dworschak P; Heyse T; Scheys L
    Arch Orthop Trauma Surg; 2017 Nov; 137(11):1557-1563. PubMed ID: 28936684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo healthy knee kinematics during dynamic full flexion.
    Hamai S; Moro-oka TA; Dunbar NJ; Miura H; Iwamoto Y; Banks SA
    Biomed Res Int; 2013; 2013():717546. PubMed ID: 23509767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics.
    Dennis DA; Mahfouz MR; Komistek RD; Hoff W
    J Biomech; 2005 Feb; 38(2):241-53. PubMed ID: 15598450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.